Problem Analysis #4

36.01s
7,570 toks
Problem Statement

Suppose the following limit is given:

limn[0,n](1+20569nx)69ne(67x)dx=pq,\lim_{n\to\infty} \int_{[0,n]} \left(1+\frac{205}{69n}x\right)^{-69n} e^{(-\frac{6}{7}x)}\,dx=\frac{p}{q},

where pp and qq are positive integers which are relatively prime. Find p2qp^2q.

oindent

Ground Truth
70609
Execution Trace
Reasoning Process

[THOUGHT]
We are given the limit:

limn[0,n](1+20569nx)69ne67xdx=pq,\lim_{n\to\infty} \int_{[0,n]} \left(1+\frac{205}{69n}x\right)^{-69n} e^{-\frac{6}{7}x}\,dx = \frac{p}{q},

with pp and qq coprime positive integers, and we are to compute p2qp^2 q.


Step 1: Analyze the integrand

Let us define:

fn(x)=(1+20569nx)69ne67x,x[0,n].f_n(x) = \left(1+\frac{205}{69n}x\right)^{-69n} e^{-\frac{6}{7}x}, \quad x \in [0,n].

We aim to compute:

limn0nfn(x)dx.\lim_{n\to\infty} \int_0^n f_n(x)\,dx.

Note that the upper limit of integration is nn, and the integrand depends on nn in a nontrivial way.

Let us make a substitution to simplify the expression.


Step 2: Substitution to simplify the power

Let:

t=20569nxx=69n205t.t = \frac{205}{69n}x \quad \Rightarrow \quad x = \frac{69n}{205} t.

Then:

dx=69n205dt.dx = \frac{69n}{205} dt.

When x=0x = 0, t=0t = 0.
When x=nx = n, t=20569nn=20569t = \frac{205}{69n} \cdot n = \frac{205}{69}.

So the new limits are t[0,20569]t \in [0, \frac{205}{69}].

Now rewrite the integrand:

  • 1+20569nx=1+t1 + \frac{205}{69n}x = 1 + t,
  • So (1+20569nx)69n=(1+t)69n\left(1 + \frac{205}{69n}x\right)^{-69n} = (1 + t)^{-69n},
  • e67x=exp(6769n205t)=exp(669n7205t)e^{-\frac{6}{7}x} = \exp\left(-\frac{6}{7} \cdot \frac{69n}{205} t\right) = \exp\left(-\frac{6 \cdot 69n}{7 \cdot 205} t\right),
  • dx=69n205dtdx = \frac{69n}{205} dt.

So the integral becomes:

0205/69(1+t)69nexp(414n1435t)69n205dt.\int_0^{205/69} (1 + t)^{-69n} \exp\left(-\frac{414n}{1435} t\right) \cdot \frac{69n}{205} dt.

Note: 669=4146 \cdot 69 = 414, 7205=14357 \cdot 205 = 1435, so yes.

So:

In=69n2050205/69(1+t)69ne414n1435tdt.I_n = \frac{69n}{205} \int_0^{205/69} (1 + t)^{-69n} e^{-\frac{414n}{1435} t} dt.

Now, let us analyze the behavior as nn \to \infty.


Step 3: Laplace’s method / Dominated convergence / Asymptotic analysis

We expect that as nn \to \infty, the integrand (1+t)69necnt(1 + t)^{-69n} e^{-c n t} becomes sharply peaked near t=0t = 0, since 69nlog(1+t)-69n \log(1+t) dominates and decays rapidly for t>0t > 0.

Let us write:

(1+t)69n=e69nlog(1+t).(1 + t)^{-69n} = e^{-69n \log(1 + t)}.

So the integrand becomes:

e69nlog(1+t)414n1435t69n205.e^{-69n \log(1 + t) - \frac{414n}{1435} t} \cdot \frac{69n}{205}.

Let us define:

ϕ(t)=69log(1+t)+4141435t.\phi(t) = 69 \log(1 + t) + \frac{414}{1435} t.

Then the exponent is nϕ(t)-n \phi(t), so the integrand is:

69n205enϕ(t).\frac{69n}{205} e^{-n \phi(t)}.

We expect that as nn \to \infty, the integral is dominated by the minimum of ϕ(t)\phi(t) on [0,205/69][0, 205/69].

But ϕ(t)\phi(t) is increasing (since ϕ(t)=691+t+4141435>0\phi'(t) = \frac{69}{1+t} + \frac{414}{1435} > 0), so minimum at t=0t = 0.

Thus, the main contribution comes from t0t \to 0.

So we expand ϕ(t)\phi(t) around t=0t = 0:

  • log(1+t)=tt22+t33\log(1 + t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \cdots,
  • So:
ϕ(t)=69(tt22+)+4141435t=(69+4141435)t692t2+\phi(t) = 69\left(t - \frac{t^2}{2} + \cdots\right) + \frac{414}{1435} t = \left(69 + \frac{414}{1435}\right)t - \frac{69}{2}t^2 + \cdots

Let us compute the coefficient of tt:

69+4141435=691435+4141435.69 + \frac{414}{1435} = \frac{69 \cdot 1435 + 414}{1435}.

But we don’t need the full expansion. For Laplace’s method, if the minimum is at t=0t = 0, and ϕ(t)at+bt2\phi(t) \sim a t + b t^2, then the integral behaves like:

0enatdt=1na,but here we have a prefactor 69n205.\int_0^\infty e^{-n a t} dt = \frac{1}{n a}, \quad \text{but here we have a prefactor } \frac{69n}{205}.

But actually, since the integrand is enϕ(t)e^{-n \phi(t)}, and ϕ(t)ϕ(0)t\phi(t) \sim \phi'(0) t near 0, we can approximate:

ϕ(t)ϕ(0)t,ϕ(t)=691+t+4141435,ϕ(0)=69+4141435.\phi(t) \approx \phi'(0) t, \quad \phi'(t) = \frac{69}{1+t} + \frac{414}{1435}, \quad \phi'(0) = 69 + \frac{414}{1435}.

Compute:

4141435=414÷31435÷3=138478.333wait, better to simplify.\frac{414}{1435} = \frac{414 \div 3}{1435 \div 3} = \frac{138}{478.333} \quad \text{wait, better to simplify.}

Check GCD of 414 and 1435.

  • 414=23223414 = 2 \cdot 3^2 \cdot 23,
  • 1435=57411435 = 5 \cdot 7 \cdot 41 → no common factors.

So 4141435\frac{414}{1435} is reduced.

Now:

ϕ(0)=69+4141435=691435+4141435.\phi'(0) = 69 + \frac{414}{1435} = \frac{69 \cdot 1435 + 414}{1435}.

Compute 69143569 \cdot 1435:

  • 701435=100,45070 \cdot 1435 = 100,450,
  • 11435=1,4351 \cdot 1435 = 1,435,
  • So 691435=100,4501,435=99,01569 \cdot 1435 = 100,450 - 1,435 = 99,015.

Then:

ϕ(0)=99,015+4141435=99,4291435.\phi'(0) = \frac{99,015 + 414}{1435} = \frac{99,429}{1435}.

So for small tt, ϕ(t)99,4291435t\phi(t) \approx \frac{99,429}{1435} t.

Then:

0205/69enϕ(t)dt0en99,4291435tdt=1n99,4291435=1435n99,429.\int_0^{205/69} e^{-n \phi(t)} dt \approx \int_0^\infty e^{-n \cdot \frac{99,429}{1435} t} dt = \frac{1}{n \cdot \frac{99,429}{1435}} = \frac{1435}{n \cdot 99,429}.

Then:

In69n2051435n99,429=69205143599,429.I_n \approx \frac{69n}{205} \cdot \frac{1435}{n \cdot 99,429} = \frac{69}{205} \cdot \frac{1435}{99,429}.

Simplify:

  • 69/205=69÷69=169/205 = 69 \div 69 = 1, 205÷69=2.96...205 \div 69 = 2.96... → not nice.

Wait, let’s compute:

In69205143599,429.I_n \to \frac{69}{205} \cdot \frac{1435}{99,429}.

But note: 1435=57411435 = 5 \cdot 7 \cdot 41, 205=541205 = 5 \cdot 41, so 1435/205=71435 / 205 = 7.

Indeed:

1435205=7.\frac{1435}{205} = 7.

So:

69205143599,429=69143520599,429=69799,429.\frac{69}{205} \cdot \frac{1435}{99,429} = 69 \cdot \frac{1435}{205 \cdot 99,429} = 69 \cdot \frac{7}{99,429}.

So:

limnIn=69799,429=48399,429.\lim_{n\to\infty} I_n = \frac{69 \cdot 7}{99,429} = \frac{483}{99,429}.

Now simplify 48399,429\frac{483}{99,429}.

First, factor numerator and denominator.

  • 483=3161=3723483 = 3 \cdot 161 = 3 \cdot 7 \cdot 23,
  • 99,42999,429: we know from earlier that 99,429=691435+414=99,015+414=99,42999,429 = 69 \cdot 1435 + 414 = 99,015 + 414 = 99,429.

But we had:

99,429=691435+414=99,015+414=99,429.99,429 = 69 \cdot 1435 + 414 = 99,015 + 414 = 99,429.

But from earlier, 99,429=691435+41499,429 = 69 \cdot 1435 + 414, but that doesn’t help.

Wait — we had:

ϕ(0)=99,4291435,so 99,429=ϕ(0)1435.\phi'(0) = \frac{99,429}{1435}, \quad \text{so } 99,429 = \phi'(0) \cdot 1435.

But we can factor 99,429.

Try dividing 99,429 by 3:

  • 9+9+4+2+9=339+9+4+2+9 = 33, divisible by 3 → yes.

99,429÷3=33,14399,429 \div 3 = 33,143.

Now 33,14333,143: sum 3+3+1+4+3=143+3+1+4+3 = 14, not divisible by 3.

Check divisibility by 7: 33,143÷7=4,734.714...33,143 \div 7 = 4,734.714... → 7×4734=33,138, remainder 5 → no.

By 23? Try 231441=?23 \cdot 1441 = ?

But we know 483=3723483 = 3 \cdot 7 \cdot 23.

So:

48399,429=372399,429.\frac{483}{99,429} = \frac{3 \cdot 7 \cdot 23}{99,429}.

Now divide 99,429 by 23:

  • 234320=99,36023 \cdot 4320 = 99,360,
  • 99,42999,360=6999,429 - 99,360 = 69,
  • 69=23369 = 23 \cdot 3, so total 23(4320+3)=23432323 \cdot (4320 + 3) = 23 \cdot 4323.

So 99,429=23432399,429 = 23 \cdot 4323.

Now 43234323: divide by 3: 4+3+2+3=124+3+2+3=12 → divisible by 3 → 4323÷3=14414323 \div 3 = 1441.

So 99,429=233144199,429 = 23 \cdot 3 \cdot 1441.

Now 14411441: check if prime or factor.

Try 11: 14+41=01 - 4 + 4 - 1 = 0 → divisible by 11.

1441÷11=1311441 \div 11 = 131.

11131=144111 \cdot 131 = 1441.

So:

99,429=32311131.99,429 = 3 \cdot 23 \cdot 11 \cdot 131.

Now numerator: 483=3723483 = 3 \cdot 7 \cdot 23.

So:

48399,429=372332311131=711131=71441.\frac{483}{99,429} = \frac{3 \cdot 7 \cdot 23}{3 \cdot 23 \cdot 11 \cdot 131} = \frac{7}{11 \cdot 131} = \frac{7}{1441}.

So the limit is:

71441.\frac{7}{1441}.

Now 77 and 14411441: 1441÷7=205.857...1441 \div 7 = 205.857... → not divisible. 1441=111311441 = 11 \cdot 131, both prime.

So p=7p = 7, q=1441q = 1441, coprime.

Now compute p2q=721441=491441p^2 q = 7^2 \cdot 1441 = 49 \cdot 1441.

Compute:

  • 501441=72,05050 \cdot 1441 = 72,050,
  • 11441=1,4411 \cdot 1441 = 1,441,
  • So 491441=72,0501,441=70,60949 \cdot 1441 = 72,050 - 1,441 = 70,609.

So the answer is 7060970609.

[PYTHON]

# Compute p^2 * q
p = 7
q = 1441
result = p**2 * q
print(result)

[THOUGHT]
The limit evaluates to 71441\frac{7}{1441}, so p=7p = 7, q=1441q = 1441, and p2q=491441=70609p^2 q = 49 \cdot 1441 = 70609.

\boxed{70609}

Tool Output
[PYTHON OUTPUT] 70609 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
The Python output confirms that p2q=70609p^2 q = 70609. This is the final answer.

\boxed{70609}

Final Model Output
70609

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

Deepseek-R1-distill-Qwen-32B (high)
140.9
Deepseek-V3.2
123.2
Gemini-3-Pro-Preview
90.8
GPT-oss-20B (high)
60.4
Solar-Pro-2 (31B)(high)
60.2
Grok-4.1-fast
38.4
HCX-007(high)
31.5
Gemma-3-27B
31.4
Qwen3-30B-A3B-2507
28.9
Llama-VARCO-8B-Instruct
21.3
GPT-5.1 (high)
19.0
Claude-Opus-4.5
16.4
A.X-4.0 (72B)
16.0
EXAONE-4.0.1-32B (high)
3.7

Avg Token Usage

Gemini-3-Pro-Preview
11241.0
Deepseek-V3.2
9874.7
Solar-Pro-2 (31B)(high)
9831.3
GPT-oss-20B (high)
9757.0
Grok-4.1-fast
7671.7
Qwen3-30B-A3B-2507
6266.7
HCX-007(high)
4190.3
Deepseek-R1-distill-Qwen-32B (high)
3984.0
Claude-Opus-4.5
3858.3
A.X-4.0 (72B)
3485.3
EXAONE-4.0.1-32B (high)
3238.3
GPT-5.1 (high)
3067.7
Llama-VARCO-8B-Instruct
2088.3
Gemma-3-27B
1705.7