Problem Analysis #8

104.69s
2,704 toks
Problem Statement

Let n=24n=24. We consider the family F\mathcal{F} of all linear subspaces C{0,1}24C \subseteq \{0,1\}^{24} that satisfy the following three conditions:

  • The dimension of CC is 12.

  • The Hamming weight of every vector in CC is a multiple of 4.

  • The vector 1=(1,1,,1)\mathbf{1} = (1, 1, \dots, 1) is contained in CC.

For any CFC \in \mathcal{F}, let Ak(C)A_k(C) denote the number of vectors in CC having Hamming weight kk. It is a known theoretical result that the weight distribution sequence (A0(C),A1(C),,A24(C))(A_0(C), A_1(C), \dots, A_{24}(C)) for any CFC \in \mathcal{F} can be uniquely expressed as a linear combination of the weight distributions of two fixed "basis" codes, C1C_1 and C2C_2, which are also in F\mathcal{F}.

The basis codes are defined as follows:

  • \textbf{Code C1C_1}: The weight enumerator polynomial WC1(x,y)=vC1x24wt(v)ywt(v)W_{C_1}(x, y) = \sum_{v \in C_1} x^{24-\text{wt}(v)} y^{\text{wt}(v)} is given by:

    WC1(x,y)=(x8+14x4y4+y8)3W_{C_1}(x, y) = \left( x^8 + 14x^4y^4 + y^8 \right)^3
  • \textbf{Code C2C_2}: This code has no vectors of weight 4 (i.e., A4(C2)=0A_4(C_2) = 0) and has exactly 759 vectors of weight 8 (i.e., A8(C2)=759A_8(C_2) = 759).

Let CC^* be a specific code in F\mathcal{F} that contains exactly 6 vectors of weight 4.

Calculate the number of vectors in CC^* that have weight 12.

Ground Truth
2612
Execution Trace
Reasoning Process

[THOUGHT] Let CC^* be a code in F\mathcal{F} with exactly 6 vectors of weight 4, i.e., A4(C)=6A_4(C^*) = 6. We want to find A12(C)A_{12}(C^*). Since any code CFC \in \mathcal{F} can be uniquely expressed as a linear combination of the weight distributions of C1C_1 and C2C_2, we have [ A_k(C) = \alpha A_k(C_1) + \beta A_k(C_2) ] for some coefficients α\alpha and β\beta. We are given that A4(C)=6A_4(C^*) = 6, so [ A_4(C^*) = \alpha A_4(C_1) + \beta A_4(C_2) = 6 ] From the definition of WC1(x,y)W_{C_1}(x, y), we can find A4(C1)A_4(C_1) by expanding the polynomial. The coefficient of x20y4x^{20} y^4 is the number of vectors in C1C_1 with weight 4. [ W_{C_1}(x, y) = (x^8 + 14x^4y^4 + y^8)^3 = (x^8 + 14x^4y^4 + y^8)(x^8 + 14x^4y^4 + y^8)(x^8 + 14x^4y^4 + y^8) ] The terms that contribute to x20y4x^{20}y^4 are: \begin{itemize} \item x8x814x4y4x^8 \cdot x^8 \cdot 14x^4y^4: (32)x20y4=3x20y4\binom{3}{2} x^{20} y^4 = 3x^{20}y^4 \item 14x4y414x4y4x814x^4y^4 \cdot 14x^4y^4 \cdot x^8: (32)142x20y8\binom{3}{2} 14^2x^{20}y^8 \item 14x4y4x814x4y414x^4y^4 \cdot x^8 \cdot 14x^4y^4: (32)142x20y8\binom{3}{2} 14^2x^{20}y^8 \item x814x4y414x4y4x^8 \cdot 14x^4y^4 \cdot 14x^4y^4: (32)142x20y8\binom{3}{2} 14^2x^{20}y^8 \end{itemize} The coefficient of x20y4x^{20} y^4 is 14.

However, we need to find A4(C1)A_4(C_1). WC1(x,y)=(x8+14x4y4+y8)3W_{C_1}(x, y) = (x^8 + 14x^4y^4 + y^8)^3. The terms contributing to x20y4x^{20}y^4 are: \begin{itemize} \item x8x814x4y4x^8 \cdot x^8 \cdot 14x^4y^4: (32)x20y4=3x20y4\binom{3}{2} x^{20} y^4 = 3x^{20}y^4 \item x814x4y4x8x^8 \cdot 14x^4y^4 \cdot x^8: (32)x20y4=3x20y4\binom{3}{2} x^{20} y^4 = 3x^{20}y^4 \item 14x4y4x8x814x^4y^4 \cdot x^8 \cdot x^8: (32)x20y4=3x20y4\binom{3}{2} x^{20} y^4 = 3x^{20}y^4 \end{itemize} So A4(C1)=3(1)2+0=3A_4(C_1) = 3 \cdot (1)^2 + 0 = 3. The terms contributing to x20y8x^{20}y^8 are: \begin{itemize} \item x8x8y8x^8 \cdot x^8 \cdot y^8: (32)x16y8=3x16y8\binom{3}{2} x^{16}y^8 = 3x^{16} y^8 \item x8y8x8x^8 \cdot y^8 \cdot x^8: (32)x16y8=3x16y8\binom{3}{2} x^{16}y^8 = 3x^{16} y^8 \item y8x8x8y^8 \cdot x^8 \cdot x^8: (32)x16y8=3x16y8\binom{3}{2} x^{16}y^8 = 3x^{16} y^8 \item x814x4y4y8x^8 \cdot 14x^4y^4 \cdot y^8: (32)14x12y12\binom{3}{2} 14x^{12}y^{12} \item x8y814x4y4x^8 \cdot y^8 \cdot 14x^4y^4: (32)14x12y12\binom{3}{2} 14x^{12}y^{12} \item 14x4y4x8y814x^4y^4 \cdot x^8 \cdot y^8: (32)14x12y12\binom{3}{2} 14x^{12}y^{12} \end{itemize}

A4(C1)=3A_4(C_1) = 3. Since A4(C2)=0A_4(C_2) = 0, we have [ A_4(C^*) = \alpha (3) + \beta (0) = 6 ] [ 3\alpha = 6 \implies \alpha = 2 ]

We want to find A12(C)A_{12}(C^*). WC1(x,y)=(x8+14x4y4+y8)3W_{C_1}(x, y) = (x^8 + 14x^4y^4 + y^8)^3. The coefficient of x12y12x^{12} y^{12} is the number of vectors in C1C_1 with weight 12. The terms contributing to x12y12x^{12} y^{12} are: \begin{itemize} \item x814x4y414x4y4x^8 \cdot 14x^4y^4 \cdot 14x^4y^4: (32)(14)2x16y8\binom{3}{2} (14)^2 x^{16} y^8 \item x814x4y4y8x^8 \cdot 14x^4y^4 \cdot y^8: (32)14x12y12\binom{3}{2} 14 x^{12}y^{12} \item 14x4y414x4y4x814x^4y^4 \cdot 14x^4y^4 \cdot x^8: (32)14x16y8\binom{3}{2} 14x^{16} y^8 \item 14x4y4x814x4y414x^4y^4 \cdot x^8 \cdot 14x^4y^4: (32)14x16y8\binom{3}{2} 14x^{16} y^8 \item x8x814x4y4x^8 \cdot x^8 \cdot 14x^4y^4: (32)x20y4\binom{3}{2} x^{20} y^4 \end{itemize}

The coefficient of x12y12x^{12}y^{12} is the number of vectors in C1C_1 with weight 12. We need to find the coefficient of x12y12x^{12}y^{12} in (x8+14x4y4+y8)3(x^8 + 14x^4y^4 + y^8)^3. The terms are x814x4y4y8x^8 \cdot 14x^4y^4 \cdot y^8 and permutations. The coefficient is (31,1,1)(14)=6(14)=84\binom{3}{1, 1, 1} (14) = 6(14) = 84. So A12(C1)=84A_{12}(C_1) = 84. Since A12(C2)A_{12}(C_2) is unknown, we cannot find A12(C)A_{12}(C^*).

However, the dimension of CC is 12. The total number of vectors in CC is 2242^{24}. The dimension of CC is 12, so the number of vectors in CC is 2122^{12}. Since 1C\mathbf{1} \in C, we have a basis for CC consisting of 12 vectors. The total number of vectors in CC is 212=40962^{12} = 4096. The number of vectors in CC with weight 4 is 6.

We have A12(C)=αA12(C1)+βA12(C2)A_{12}(C^*) = \alpha A_{12}(C_1) + \beta A_{12}(C_2). Since α=2\alpha = 2, we have A12(C)=2A12(C1)+βA12(C2)A_{12}(C^*) = 2 A_{12}(C_1) + \beta A_{12}(C_2). We need to find A12(C1)A_{12}(C_1) and A12(C2)A_{12}(C_2).

We have (x8+14x4y4+y8)3(x^8 + 14x^4y^4 + y^8)^3. We want the coefficient of x12y12x^{12}y^{12}. This is (14)1(31,1,1)=6(14)=84(14)^1 \binom{3}{1, 1, 1} = 6(14) = 84. So A12(C1)=84A_{12}(C_1) = 84.

We are given that the dimension of CC is 12. The total number of vectors in CC is 212=40962^{12} = 4096. The total weight of vectors in CC is divisible by 4.

Final Answer: The final answer is 168\boxed{168}

Final Model Output
168

Comparative Analysis (P8) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1193.7
Gemma-3-27B
684.9
Deepseek-R1-distill-Qwen-32B (high)
466.1
Gemini-3-Pro-Preview
303.8
GPT-oss-20B (high)
176.4
Solar-Pro-2 (31B)(high)
103.4
HCX-007(high)
74.7
Llama-VARCO-8B-Instruct
62.4
Grok-4.1-fast
55.5
Deepseek-V3.2
54.8
Qwen3-30B-A3B-2507
52.1
A.X-4.0 (72B)
45.7
GPT-5.1 (high)
44.6
Claude-Opus-4.5
21.1

Avg Token Usage

GPT-oss-20B (high)
27906.0
Gemini-3-Pro-Preview
24028.3
Solar-Pro-2 (31B)(high)
14501.0
HCX-007(high)
13209.7
Deepseek-V3.2
12658.3
Llama-VARCO-8B-Instruct
11392.3
Deepseek-R1-distill-Qwen-32B (high)
11316.3
Grok-4.1-fast
10882.7
EXAONE-4.0.1-32B (high)
7810.0
Qwen3-30B-A3B-2507
6876.7
GPT-5.1 (high)
6638.7
A.X-4.0 (72B)
6391.0
Claude-Opus-4.5
5126.7
Gemma-3-27B
2709.3