Suppose the following limit is given:
where and are positive integers which are relatively prime. Find .
oindent
[THOUGHT] Let . As , we have . Thus, [ \left(1+\frac{205}{69n}x\right)^{-69n} \approx e^{-\frac{205}{69n}x \cdot 69n} = e^{-205x}. ] Therefore, the integral becomes [ \lim_{n\to\infty} \int_{[0,n]} e^{-205x-\frac{6}{7}x},dx = \lim_{n\to\infty} \int_0^n e^{-(205+\frac{6}{7})x},dx. ] We have . [ \lim_{n\to\infty} \int_0^n e^{-\frac{1441}{7}x},dx = \lim_{n\to\infty} \left[-\frac{7}{1441}e^{-\frac{1441}{7}x}\right]0^n = \lim{n\to\infty} -\frac{7}{1441}e^{-\frac{1441}{7}n} - \left(-\frac{7}{1441}e^0\right) = \lim_{n\to\infty} -\frac{7}{1441}e^{-\frac{1441}{7}n} + \frac{7}{1441}. ] Since , we have [ \lim_{n\to\infty} \int_0^n e^{-(205+\frac{6}{7})x},dx = \frac{7}{1441}. ] Thus, and . We need to check if they are relatively prime. . Thus . Then .
p = 7
q = 1441
print(p**2 * q)
[THOUGHT] The Python output confirms the calculation .
\boxed{70609}