Problem Analysis #2

107.46s
4,624 toks
Problem Statement

Evaluate the integral

I=P(x)eix(x3i)8dx,I = \int_{-\infty}^{\infty} \frac{P(x)\, e^{ix}}{(x - 3i)^{8}}\,dx,

where

P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840.P(x) = x^{7} - 14ix^{6} + (85 - 60i)x^{5} - (240 + 210i)x^{4} + (420 - 840i)x^{3} - (560 + 1680i)x^{2} + (1344 - 2688i)x + 3840.

If the value of the integral is I=a+biI = a + bi, ii is the imaginary unit, compute

10a+b.\lfloor 10a \rfloor + \lfloor b \rfloor.
Ground Truth
7
Execution Trace
Reasoning Process

[THOUGHT] Let f(x)=(x3i)8f(x) = (x-3i)^8. Then we can expand this as [ f(x) = \sum_{k=0}^8 \binom{8}{k} x^{8-k} (-3i)^k ] We are given P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840P(x) = x^7 - 14ix^6 + (85-60i)x^5 - (240+210i)x^4 + (420-840i)x^3 - (560+1680i)x^2 + (1344-2688i)x + 3840. We observe that P(x)P(x) is the expansion of (x6i)7(x-6i)^7. Specifically, we have [ (x-6i)^7 = \sum_{k=0}^7 \binom{7}{k} x^{7-k} (-6i)^k ] [ (x-6i)^7 = x^7 + \binom{7}{1} x^6 (-6i) + \binom{7}{2} x^5 (-6i)^2 + \binom{7}{3} x^4 (-6i)^3 + \binom{7}{4} x^3 (-6i)^4 + \binom{7}{5} x^2 (-6i)^5 + \binom{7}{6} x (-6i)^6 + (-6i)^7 ] [ (x-6i)^7 = x^7 - 42ix^6 + \binom{7}{2} (36)x^5 - \binom{7}{3}(216i) x^4 + \binom{7}{4} (1296)x^3 - \binom{7}{5}(7776i) x^2 + \binom{7}{6} (46656)x - 279936i ] [ (x-6i)^7 = x^7 - 42ix^6 + 21(36)x^5 - 35(216i) x^4 + 35(1296)x^3 - 21(7776i) x^2 + 7(46656)x - 279936i ] [ (x-6i)^7 = x^7 - 42ix^6 + 756x^5 - 7560i x^4 + 45360x^3 - 163296i x^2 + 326592x - 279936i ] However, we are given P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840P(x) = x^7 - 14ix^6 + (85-60i)x^5 - (240+210i)x^4 + (420-840i)x^3 - (560+1680i)x^2 + (1344-2688i)x + 3840. We can rewrite P(x)P(x) as (x2i)7=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x128i(x-2i)^7 = x^7 - 14ix^6 + (85-60i)x^5 - (240+210i)x^4 + (420-840i)x^3 - (560+1680i)x^2 + (1344-2688i)x - 128i. The given P(x)P(x) is actually (x4i)7=x728ix6+(336112i)x5(1344+896i)x4+(35842016i)x3(5376+1792i)x2+(4032504i)x16384i(x-4i)^7 = x^7 - 28ix^6 + (336-112i)x^5 - (1344+896i) x^4 + (3584-2016i)x^3 - (5376+1792i) x^2 + (4032-504i)x - 16384 i. Let us consider (x2i)7=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x128i(x-2i)^7 = x^7 - 14ix^6 + (85-60i)x^5 - (240+210i)x^4 + (420-840i)x^3 - (560+1680i)x^2 + (1344-2688i)x - 128i. Then we have P(x)=(x4i)7+3840P(x) = (x-4i)^7 + 3840. We want to evaluate (x2i)7eix(x3i)8dx\int_{-\infty}^{\infty} \frac{(x-2i)^7 e^{ix}}{(x-3i)^8}\,dx. Using Cauchy's integral formula, we have P(x)eix(x3i)8dx=2πif(7)(3i)\int_{-\infty}^{\infty} \frac{P(x) e^{ix}}{(x-3i)^8}\,dx = 2\pi i f^{(7)}(3i). Let f(x)=P(x)(x3i)f(x) = \frac{P(x)}{(x-3i)}. Then we have I=2πif(7)(3i)I = 2\pi i f^{(7)}(3i). Since P(x)=(x2i)7P(x) = (x-2i)^7, we have (x2i)7eix(x3i)8dx\int_{-\infty}^{\infty} \frac{(x-2i)^7 e^{ix}}{(x-3i)^8}\,dx. We have P(x)=(x2i)7P(x) = (x-2i)^7, so we want to evaluate (x2i)7eix(x3i)8dx\int_{-\infty}^{\infty} \frac{(x-2i)^7 e^{ix}}{(x-3i)^8}\,dx. Let f(z)=(z2i)7f(z) = (z-2i)^7. Then we want to evaluate f(x)eix(x3i)8dx\int_{-\infty}^{\infty} \frac{f(x) e^{ix}}{(x-3i)^8}\,dx. We have P(x)eix(x3i)8dx=2πid7dz7P(z)z=3i\int_{-\infty}^{\infty} \frac{P(x) e^{ix}}{(x-3i)^8}\,dx = 2\pi i \frac{d^7}{dz^7} P(z) |_{z=3i}. Since P(x)=(x2i)7P(x)=(x-2i)^7, we have d7dx7P(x)=7!\frac{d^7}{dx^7} P(x) = 7!. Then (x2i)7eix(x3i)8dx=2πi(7!)z=3i\int_{-\infty}^{\infty} \frac{(x-2i)^7 e^{ix}}{(x-3i)^8}\,dx = 2\pi i (7!) |_{z=3i}. However, we are given P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840P(x) = x^7 - 14ix^6 + (85-60i)x^5 - (240+210i)x^4 + (420-840i)x^3 - (560+1680i)x^2 + (1344-2688i)x + 3840. We have P(x)=(x2i)7+3840P(x)=(x-2i)^7 + 3840. Then we have ((x2i)7+3840)eix(x3i)8dx\int_{-\infty}^{\infty} \frac{((x-2i)^7 + 3840) e^{ix}}{(x-3i)^8}\,dx. Let f(z)=(z2i)7+3840f(z) = (z-2i)^7 + 3840. Then f(7)(z)=7!f^{(7)}(z) = 7! for all z. Then ((x2i)7+3840)eix(x3i)8dx=2πi(7!)z=3i=2πi(5040)\int_{-\infty}^{\infty} \frac{((x-2i)^7 + 3840) e^{ix}}{(x-3i)^8}\,dx = 2\pi i (7!) |_{z=3i} = 2\pi i (5040). Then I=P(x)eix(x3i)8dx=2πid7dz7((z2i)7+3840)z=3iI = \int_{-\infty}^{\infty} \frac{P(x) e^{ix}}{(x-3i)^8}\,dx = 2\pi i \frac{d^7}{dz^7} ((z-2i)^7 + 3840) |_{z=3i}. Since d7dz7((z2i)7+3840)=7!\frac{d^7}{dz^7} ((z-2i)^7 + 3840) = 7!, we have I=2πi(5040)=10080πiI = 2\pi i (5040) = 10080 \pi i. Then a=0a=0 and b=10080πb = 10080 \pi, so 10a+b=0+10080π=0+31541=31541\lfloor 10a \rfloor + \lfloor b \rfloor = \lfloor 0 \rfloor + \lfloor 10080\pi \rfloor = 0 + 31541 = 31541.

[PYTHON] import numpy as np

a = 0.0 b = 10080 * np.pi print(int(np.floor(10*a)) + int(np.floor(b)))

Tool Output
[PYTHON OUTPUT] 31667 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output gives 31667.

\boxed{31667}

Final Model Output
31667

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

Qwen3-30B-A3B-2507
7431.3
Deepseek-R1-distill-Qwen-32B (high)
859.1
Gemini-3-Pro-Preview
199.4
Deepseek-V3.2
116.7
GPT-oss-20B (high)
86.7
Gemma-3-27B
83.2
Solar-Pro-2 (31B)(high)
71.2
HCX-007(high)
61.9
A.X-4.0 (72B)
42.6
Llama-VARCO-8B-Instruct
35.1
Grok-4.1-fast
22.6
Claude-Opus-4.5
15.8
GPT-5.1 (high)
13.1
EXAONE-4.0.1-32B (high)
5.4

Avg Token Usage

Qwen3-30B-A3B-2507
24109.7
GPT-oss-20B (high)
19053.3
Gemini-3-Pro-Preview
17645.0
Deepseek-R1-distill-Qwen-32B (high)
11660.7
HCX-007(high)
11315.0
Solar-Pro-2 (31B)(high)
10817.0
Deepseek-V3.2
5996.0
A.X-4.0 (72B)
5881.3
Grok-4.1-fast
5630.3
Llama-VARCO-8B-Instruct
5237.0
Claude-Opus-4.5
4038.7
EXAONE-4.0.1-32B (high)
3954.7
Gemma-3-27B
3894.7
GPT-5.1 (high)
3378.0