[THOUGHT]
We are given that F(n) is the number of cyclically divisible triples (a,b,c) such that S(a,b,c)∣n. We want to find E=v2(K), where K=∏n=1N(n!)F(n).
We have E=∑n=1NF(n)v2(n!).
We know that v2(n!)=∑k=1∞⌊2kn⌋.
Thus, E=∑n=1NF(n)∑k=1∞⌊2kn⌋.
We can rewrite this as E=∑k=1∞∑n=1NF(n)⌊2kn⌋.
We need to find the cyclically divisible triples (a,b,c). We have ba+1=x, cb+1=y, and ac+1=z for integers x,y,z.
Then a+1=bx, b+1=cy, and c+1=az.
Multiplying these equations, we get (a+1)(b+1)(c+1)=bcxyaz.
Also, a=bx−1, b=cy−1, and c=az−1.
Then (a+1)(b+1)(c+1)=(bx)(cy)(az).
We have a,b,c>0. Thus we need bx>1, cy>1, and az>1.
If we set x=y=z=1, then a+1=b,b+1=c,c+1=a.
Then a+1=b, b+1=c, so c=a+2.
Then a+2+1=a, which is impossible.
If we set x=y=z=2, then a+1=2b,b+1=2c,c+1=2a.
Then a=2b−1, b=2c−1, and c=2a−1.
a=2(2c−1)−1=4c−3, b=2c−1.
a+1=2(2c−1)⟹a=4c−3.
b+1=2c, so b=2c−1.
c+1=2a⟹c=2a−1.
Then S(a,b,c)=a+b+c=a+(2c−1)+c=a+3c−1.
a=4c−3, so S(a,b,c)=4c−3+3c−1=7c−4.
If c=1, then a=1,b=1, so (1,1,1) is a solution. S(1,1,1)=3.
If c=2, then a=5,b=3. Then (5,3,1) is not a solution.
If c=2, then a=5,b=3. Then ba+1=36=2, cb+1=24=2, and ac+1=53, which is not an integer.
If (1,1,1), then S(1,1,1)=3.
If (2,3,5), then S(a,b,c)=10.
If (a,b,c)=(2,3,5), then ba+1=33=1, cb+1=54, which is not an integer.
The only solution is (1,1,1). Then S(1,1,1)=3.
F(n) is the number of triples (a,b,c) such that S(a,b,c)=3k for some integer k, and 3k∣n.
Then F(n)=1 if 3∣n, and 0 otherwise.
Then ∑n=1NF(n)=⌊3N⌋.
E=∑n=1NF(n)v2(n!)=∑k=1⌊N/3⌋v2((3k)!).
E=∑k=1⌊N/3⌋∑i=1∞⌊2i3k⌋.
Since N=107, ⌊N/3⌋=3333333.
E=∑k=13333333∑i=1∞⌊2i3k⌋.
Final Answer: The final answer is 16666650