Problem Analysis #0

63.43s
1,850 toks
Problem Statement

For positive integers a,b,ca,b,c we say that the triple (a,b,c)(a,b,c) is \emph{cyclically divisible} if

a+1b,b+1c,c+1a\frac{a+1}{b},\quad \frac{b+1}{c},\quad \frac{c+1}{a}

are all integers.

Let T\mathcal{T} be the set of all cyclically divisible ordered triples (a,b,c)(a,b,c) of positive integers. For any positive integer nn, define

S(a,b,c):=a+b+c,S(a,b,c):=a+b+c,

and the arithmetic function F:NNF:\mathbb{N}\to\mathbb{N} by

F(n):={(a,b,c)TS(a,b,c)n}.F(n):=\bigl|\{(a,b,c)\in\mathcal{T}\mid S(a,b,c)\mid n\}\bigr|.

For arithmetic functions u,v:NCu,v:\mathbb{N}\to\mathbb{C}, define their \emph{divisor-sum combination} by

(uv)(n):=dnu(d)v ⁣(nd)(nN),(u * v)(n):=\sum_{d\mid n}u(d)\,v\!\left(\frac{n}{d}\right)\qquad(n\in\mathbb{N}),

and let 1\mathbf{1} denote the constant function 1(n)1\mathbf{1}(n)\equiv 1.

It is known that the set T\mathcal{T} is finite. Moreover, there exists an arithmetic function

G:NZ0,G:\mathbb{N}\to\mathbb{Z}_{\ge 0},

depending only on the values of S(a,b,c)S(a,b,c) for (a,b,c)T(a,b,c)\in\mathcal{T}, such that

F(n)=(G1)(n)=dnG(d)for all nN.F(n) = (G * \mathbf{1})(n) = \sum_{d\mid n} G(d) \quad\text{for all } n\in\mathbb{N}.

Let

N:=107N:=10^7

and define the integer

K:=n=1N(n!)F(n).\mathcal{K} := \prod_{n=1}^{N} \bigl(n!\bigr)^{F(n)}.

Set

E:=v2(K),E := v_2(\mathcal{K}),

the exponent of 22 in the prime factorization of K\mathcal{K}.

Using the above information, determine the exact value of the integer EE.

Ground Truth
91666486036450
Execution Trace
Reasoning Process

[THOUGHT] We are given that F(n)F(n) is the number of cyclically divisible triples (a,b,c)(a,b,c) such that S(a,b,c)nS(a,b,c) \mid n. We want to find E=v2(K)E = v_2(\mathcal{K}), where K=n=1N(n!)F(n)\mathcal{K} = \prod_{n=1}^{N} (n!)^{F(n)}. We have E=n=1NF(n)v2(n!)E = \sum_{n=1}^{N} F(n) v_2(n!). We know that v2(n!)=k=1n2kv_2(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{2^k}\rfloor. Thus, E=n=1NF(n)k=1n2kE = \sum_{n=1}^{N} F(n) \sum_{k=1}^{\infty} \lfloor \frac{n}{2^k}\rfloor. We can rewrite this as E=k=1n=1NF(n)n2kE = \sum_{k=1}^{\infty} \sum_{n=1}^{N} F(n) \lfloor \frac{n}{2^k}\rfloor. We need to find the cyclically divisible triples (a,b,c)(a,b,c). We have a+1b=x\frac{a+1}{b} = x, b+1c=y\frac{b+1}{c} = y, and c+1a=z\frac{c+1}{a} = z for integers x,y,zx,y,z. Then a+1=bxa+1=bx, b+1=cyb+1=cy, and c+1=azc+1=az. Multiplying these equations, we get (a+1)(b+1)(c+1)=bcxyaz(a+1)(b+1)(c+1) = b c x y a z. Also, a=bx1a=bx-1, b=cy1b=cy-1, and c=az1c=az-1. Then (a+1)(b+1)(c+1)=(bx)(cy)(az)(a+1)(b+1)(c+1) = (bx)(cy)(az). We have a,b,c>0a,b,c>0. Thus we need bx>1bx > 1, cy>1cy > 1, and az>1az > 1. If we set x=y=z=1x=y=z=1, then a+1=b,b+1=c,c+1=aa+1 = b, b+1 = c, c+1 = a. Then a+1=ba+1=b, b+1=cb+1=c, so c=a+2c = a+2. Then a+2+1=aa+2+1 = a, which is impossible. If we set x=y=z=2x=y=z=2, then a+1=2b,b+1=2c,c+1=2aa+1 = 2b, b+1 = 2c, c+1 = 2a. Then a=2b1a=2b-1, b=2c1b=2c-1, and c=2a1c=2a-1. a=2(2c1)1=4c3a = 2(2c-1)-1 = 4c-3, b=2c1b=2c-1. a+1=2(2c1)    a=4c3a+1 = 2(2c-1) \implies a=4c-3. b+1=2cb+1 = 2c, so b=2c1b=2c-1. c+1=2a    c=2a1c+1 = 2a \implies c=2a-1. Then S(a,b,c)=a+b+c=a+(2c1)+c=a+3c1S(a,b,c) = a+b+c = a + (2c-1) + c = a+3c-1. a=4c3a=4c-3, so S(a,b,c)=4c3+3c1=7c4S(a,b,c) = 4c-3+3c-1 = 7c-4. If c=1c=1, then a=1,b=1a=1, b=1, so (1,1,1)(1,1,1) is a solution. S(1,1,1)=3S(1,1,1)=3. If c=2c=2, then a=5,b=3a=5, b=3. Then (5,3,1)(5,3,1) is not a solution. If c=2c=2, then a=5,b=3a=5, b=3. Then a+1b=63=2\frac{a+1}{b} = \frac{6}{3}=2, b+1c=42=2\frac{b+1}{c}=\frac{4}{2}=2, and c+1a=35\frac{c+1}{a} = \frac{3}{5}, which is not an integer. If (1,1,1)(1,1,1), then S(1,1,1)=3S(1,1,1)=3. If (2,3,5)(2,3,5), then S(a,b,c)=10S(a,b,c)=10. If (a,b,c)=(2,3,5)(a,b,c)=(2,3,5), then a+1b=33=1\frac{a+1}{b}=\frac{3}{3}=1, b+1c=45\frac{b+1}{c}=\frac{4}{5}, which is not an integer. The only solution is (1,1,1)(1,1,1). Then S(1,1,1)=3S(1,1,1)=3. F(n)F(n) is the number of triples (a,b,c)(a,b,c) such that S(a,b,c)=3kS(a,b,c)=3k for some integer kk, and 3kn3k \mid n. Then F(n)=1F(n) = 1 if 3n3 \mid n, and 00 otherwise. Then n=1NF(n)=N3\sum_{n=1}^{N} F(n) = \lfloor \frac{N}{3}\rfloor. E=n=1NF(n)v2(n!)=k=1N/3v2((3k)!)E = \sum_{n=1}^{N} F(n) v_2(n!) = \sum_{k=1}^{\lfloor N/3\rfloor} v_2((3k)!). E=k=1N/3i=13k2iE = \sum_{k=1}^{\lfloor N/3\rfloor} \sum_{i=1}^\infty \lfloor \frac{3k}{2^i}\rfloor. Since N=107N=10^7, N/3=3333333\lfloor N/3\rfloor = 3333333. E=k=13333333i=13k2iE = \sum_{k=1}^{3333333} \sum_{i=1}^{\infty} \lfloor \frac{3k}{2^i}\rfloor.

Final Answer: The final answer is 16666650\boxed{16666650}

Final Model Output
16666650

Comparative Analysis (P0) (Average across runs)

Avg Time Taken

Deepseek-R1-distill-Qwen-32B (high)
1136.6
Qwen3-30B-A3B-2507
550.5
Solar-Pro-2 (31B)(high)
382.0
Gemini-3-Pro-Preview
302.1
Deepseek-V3.2
287.0
HCX-007(high)
234.6
Grok-4.1-fast
113.6
GPT-5.1 (high)
109.5
Gemma-3-27B
87.5
GPT-oss-20B (high)
79.3
A.X-4.0 (72B)
56.4
Claude-Opus-4.5
39.1
Llama-VARCO-8B-Instruct
31.3
EXAONE-4.0.1-32B (high)
16.2

Avg Token Usage

Solar-Pro-2 (31B)(high)
146942.0
Gemini-3-Pro-Preview
28923.0
Deepseek-R1-distill-Qwen-32B (high)
24609.7
Grok-4.1-fast
20551.3
Deepseek-V3.2
19976.7
Qwen3-30B-A3B-2507
14717.7
GPT-oss-20B (high)
14426.7
GPT-5.1 (high)
11798.0
Claude-Opus-4.5
11332.7
A.X-4.0 (72B)
8872.0
Llama-VARCO-8B-Instruct
5431.3
EXAONE-4.0.1-32B (high)
5162.7
HCX-007(high)
4787.3
Gemma-3-27B
3081.3