Problem Analysis #9

26.20s
5,334 toks
Problem Statement

Consider the 10$$\times$$ 10 real symmetric matrix

A=[20101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020].A = \left[ \begin{array}{cccccccccc} 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 \end{array} \right].

Calculate

N:=det(A).N := \det(A).
Ground Truth
110000000000
Execution Trace
Reasoning Process

[PYTHON] import numpy as np import sympy

def calculate_determinant(): # Construct the matrix n = 10 # Diagonal 20, off-diagonal 10 # A = 10 * I + 10 * J # Or simply construct it element by element A_list = [] for i in range(n): row = [] for j in range(n): if i == j: row.append(20) else: row.append(10) A_list.append(row)

# Use sympy for exact calculation
A_sympy = sympy.Matrix(A_list)
det_sympy = A_sympy.det()

# Use numpy for verification (though float precision might be an issue, for this size it should be fine)
A_np = np.array(A_list)
det_np = np.linalg.det(A_np)

print(f"Sympy determinant: {det_sympy}")
print(f"Numpy determinant: {det_np}")

# Theoretical calculation
# Eigenvalues are 10 + 10*10 = 110 (mult 1) and 10 (mult 9)
theoretical = 110 * (10**9)
print(f"Theoretical determinant: {theoretical}")

calculate_determinant() [/PYTHON] [THOUGHT] The matrix AA is a 10×1010 \times 10 matrix with diagonal entries 20 and off-diagonal entries 10. This can be written as A=10I+10JA = 10I + 10J, where II is the identity matrix and JJ is the all-ones matrix. The eigenvalues of JJ are n=10n=10 (with multiplicity 1) and 00 (with multiplicity n1=9n-1=9). Therefore, the eigenvalues of AA are: λ1=10+10(10)=110\lambda_1 = 10 + 10(10) = 110 (with multiplicity 1) λ2=10+10(0)=10\lambda_2 = 10 + 10(0) = 10 (with multiplicity 9) The determinant is the product of the eigenvalues: det(A)=110×109=11×1010=110,000,000,000\det(A) = 110 \times 10^9 = 11 \times 10^{10} = 110,000,000,000. The Python code using sympy confirmed this exact integer value.

[/THOUGHT]

\boxed{110000000000}

Tool Output
[PYTHON OUTPUT] Sympy determinant: 110000000000 Numpy determinant: 109999999999.99947 Theoretical determinant: 110000000000 [/PYTHON OUTPUT]
Reasoning Process

The matrix AA is a 10×1010 \times 10 matrix with diagonal entries equal to 20 and off-diagonal entries equal to 10. We can express AA as: [ A = 10I + 10J ] where II is the 10×1010 \times 10 identity matrix and JJ is the 10×1010 \times 10 matrix of all ones.

The eigenvalues of JJ are 1010 (with multiplicity 1, corresponding to the eigenvector of all ones) and 00 (with multiplicity 9, corresponding to vectors with sum zero). Since AA is a linear combination of II and JJ, its eigenvalues are given by λA=10+10λJ\lambda_A = 10 + 10\lambda_J. Thus, the eigenvalues of AA are:

  1. For λJ=10\lambda_J = 10: λ1=10+10(10)=110\lambda_1 = 10 + 10(10) = 110 (multiplicity 1).
  2. For λJ=0\lambda_J = 0: λ2=10+10(0)=10\lambda_2 = 10 + 10(0) = 10 (multiplicity 9).

The determinant of AA is the product of its eigenvalues: [ \det(A) = 110^1 \times 10^9 = 110 \times 1,000,000,000 = 110,000,000,000 ]

The Python code confirmed this result exactly.

\boxed{110000000000}

Final Model Output
110000000000

Comparative Analysis (P9) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1180.7
Deepseek-R1-distill-Qwen-32B (high)
114.5
Gemma-3-27B
91.9
Llama-VARCO-8B-Instruct
68.8
Solar-Pro-2 (31B)(high)
30.2
Gemini-3-Pro-Preview
24.9
Deepseek-V3.2
19.3
HCX-007(high)
16.9
Grok-4.1-fast
14.3
A.X-4.0 (72B)
13.9
GPT-oss-20B (high)
11.5
Claude-Opus-4.5
9.4
Qwen3-30B-A3B-2507
8.5
GPT-5.1 (high)
6.9

Avg Token Usage

EXAONE-4.0.1-32B (high)
25940.7
Llama-VARCO-8B-Instruct
12475.0
Solar-Pro-2 (31B)(high)
6433.3
Gemini-3-Pro-Preview
4874.3
Gemma-3-27B
4846.0
Grok-4.1-fast
4259.3
Deepseek-R1-distill-Qwen-32B (high)
4045.7
A.X-4.0 (72B)
3684.7
Deepseek-V3.2
3590.0
Claude-Opus-4.5
3365.3
GPT-oss-20B (high)
3077.7
Qwen3-30B-A3B-2507
2697.0
GPT-5.1 (high)
2694.7
HCX-007(high)
1782.3