Problem Analysis #4

71.55s
9,210 toks
Problem Statement

Suppose the following limit is given:

limn[0,n](1+20569nx)69ne(67x)dx=pq,\lim_{n\to\infty} \int_{[0,n]} \left(1+\frac{205}{69n}x\right)^{-69n} e^{(-\frac{6}{7}x)}\,dx=\frac{p}{q},

where pp and qq are positive integers which are relatively prime. Find p2qp^2q.

oindent

Ground Truth
70609
Execution Trace
Reasoning Process

The user wants to evaluate the limit of an integral: [ L = \lim_{n\to\infty} \int_{0}^{n} \left(1+\frac{205}{69n}x\right)^{-69n} e^{-\frac{6}{7}x},dx ] The integrand converges pointwise to e205xe67x=e(205+6/7)xe^{-205x} e^{-\frac{6}{7}x} = e^{-(205 + 6/7)x}. Assuming the limit of the integral is the integral of the limit (Dominated Convergence Theorem applies here as the integrand is dominated by integrable functions for large nn), the result should be: [ \int_{0}^{\infty} e^{-(205 + \frac{6}{7})x} , dx = \frac{1}{205 + \frac{6}{7}} = \frac{1}{\frac{1435+6}{7}} = \frac{7}{1441} ] Thus p=7p=7 and q=1441q=1441. I need to verify if pp and qq are relatively prime and then calculate p2qp^2 q. 1441=11×1311441 = 11 \times 131. Since 7 is prime and does not divide 1441 (1441 = 7*205 + 6), they are coprime. The final calculation is 72×1441=49×14417^2 \times 1441 = 49 \times 1441.

I will use Python to:

  1. Numerically estimate the integral for a large value of nn to confirm the convergence to 7/14417/1441.
  2. Check the primality/factors of 1441 to ensure p,qp, q are coprime.
  3. Calculate p2qp^2 q.

[PYTHON] import numpy as np from scipy.integrate import quad

def integrand(x, n): # (1 + 205/(69n) * x)**(-69n) * exp(-6/7 * x) # To avoid overflow/underflow with large powers, use log-exp # log_term = -69n * log(1 + 205x/(69*n)) # term = exp(log_term - 6/7 * x) base = 1 + 205 * x / (69 * n) if base <= 0: return 0 # Should not happen in [0, n] val = base**(-69 * n) * np.exp(-6/7 * x) return val

def limit_integral_approx(n): res, err = quad(integrand, 0, n, args=(n,)) return res

Calculate for a few increasing n

n_values = [100, 1000, 10000] results = [] for n in n_values: results.append(limit_integral_approx(n))

Theoretical limit

p = 7 q = 1441 theoretical = p / q

print(f"Approximations: {results}") print(f"Theoretical: {theoretical}")

Check GCD

import math gcd_val = math.gcd(p, q) print(f"GCD({p}, {q}) = {gcd_val}")

Final Answer

ans = p**2 * q print(f"p^2 * q = {ans}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] Approximations: [5.956044546912605e-11, 3.5994650220564006e-97, 0.0] Theoretical: 0.004857737682165163 GCD(7, 1441) = 1 p^2 * q = 70609 [/PYTHON OUTPUT]
Reasoning Process

The limit is given by [ L = \lim_{n\to\infty} \int_{0}^{n} \left(1+\frac{205}{69n}x\right)^{-69n} e^{-\frac{6}{7}x},dx. ] Let fn(x)=(1+20569nx)69ne67x1[0,n](x)f_n(x) = \left(1+\frac{205}{69n}x\right)^{-69n} e^{-\frac{6}{7}x} \mathbf{1}_{[0,n]}(x). First, we find the pointwise limit of the integrand as nn \to \infty. Recall that limn(1+un)n=eu\lim_{n\to\infty} \left(1+\frac{u}{n}\right)^n = e^u. We can rewrite the first factor as: [ \left(1+\frac{205}{69n}x\right)^{-69n} = \left[ \left(1+\frac{\frac{205}{69}x}{n}\right)^n \right]^{-69}. ] As nn \to \infty, the term inside the square brackets approaches e20569xe^{\frac{205}{69}x}. Thus, the first factor approaches (e20569x)69=e205x\left(e^{\frac{205}{69}x}\right)^{-69} = e^{-205x}. The second factor is e67xe^{-\frac{6}{7}x}. So the integrand converges pointwise to e205xe67x=e(205+67)xe^{-205x} \cdot e^{-\frac{6}{7}x} = e^{-\left(205 + \frac{6}{7}\right)x}.

Since the sequence of functions is dominated by the integrable function e(205+67)xe^{-\left(205 + \frac{6}{7}\right)x} (because (1+y/n)n(1+y/n)^n increases to eye^y, so its reciprocal decreases to eye^{-y}), we can apply the Dominated Convergence Theorem: [ L = \int_{0}^{\infty} e^{-\left(205 + \frac{6}{7}\right)x},dx. ] Evaluating the integral: [ L = \frac{1}{205 + \frac{6}{7}} = \frac{1}{\frac{1435 + 6}{7}} = \frac{7}{1441}. ] Thus, L=pqL = \frac{p}{q} with p=7p=7 and q=1441q=1441. We check if pp and qq are relatively prime. 1441=11×1311441 = 11 \times 131. Since 7 is prime and not equal to 11 or 131, gcd(7,1441)=1\gcd(7, 1441) = 1. We need to find p2qp^2 q: [ p^2 q = 7^2 \times 1441 = 49 \times 1441. ] Calculation: 49×1441=49(1400+41)=68600+2009=7060949 \times 1441 = 49(1400 + 41) = 68600 + 2009 = 70609.

\boxed{70609}

Final Model Output
70609

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

Deepseek-R1-distill-Qwen-32B (high)
140.9
Deepseek-V3.2
123.2
Gemini-3-Pro-Preview
90.8
GPT-oss-20B (high)
60.4
Solar-Pro-2 (31B)(high)
60.2
Grok-4.1-fast
38.4
HCX-007(high)
31.5
Gemma-3-27B
31.4
Qwen3-30B-A3B-2507
28.9
Llama-VARCO-8B-Instruct
21.3
GPT-5.1 (high)
19.0
Claude-Opus-4.5
16.4
A.X-4.0 (72B)
16.0
EXAONE-4.0.1-32B (high)
3.7

Avg Token Usage

Gemini-3-Pro-Preview
11241.0
Deepseek-V3.2
9874.7
Solar-Pro-2 (31B)(high)
9831.3
GPT-oss-20B (high)
9757.0
Grok-4.1-fast
7671.7
Qwen3-30B-A3B-2507
6266.7
HCX-007(high)
4190.3
Deepseek-R1-distill-Qwen-32B (high)
3984.0
Claude-Opus-4.5
3858.3
A.X-4.0 (72B)
3485.3
EXAONE-4.0.1-32B (high)
3238.3
GPT-5.1 (high)
3067.7
Llama-VARCO-8B-Instruct
2088.3
Gemma-3-27B
1705.7