Problem Analysis #9

11.90s
3,256 toks
Problem Statement

Consider the 10$$\times$$ 10 real symmetric matrix

A=[20101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020].A = \left[ \begin{array}{cccccccccc} 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 \end{array} \right].

Calculate

N:=det(A).N := \det(A).
Ground Truth
110000000000
Execution Trace
Reasoning Process

[THOUGHT] We need to compute the determinant of a 10×10 real symmetric matrix A. The matrix has 20 on the diagonal and 10 elsewhere. This is a special matrix: A = 10J + 10I, where J is the all-ones matrix, and I is the identity matrix? Let's check: A_{ii} = 20 = 10 + 10, so A = 10J + 10I, where J is matrix with all entries 1. Indeed, 10J gives 10 everywhere, plus 10I adds 10 on diagonal, total diagonal 20, off-diagonal 10. So A = 10*(J + I). Then det(A) = det(10*(J + I)) = 10^10 * det(J + I). So we need det(J + I). J is rank 1, eigenvalues: one eigenvalue = n (since Jones = nones), others zero. J + I shifts eigenvalues by 1: eigenvalues of J+I are: (n+1) once, and 1 repeated (n-1) times. For n=10, eigenvalues: 11 (once) and 1 (nine times). So det(J+I) = 11 * 1^9 = 11. Then det(A) = 10^10 * 11 = 11 * 10^10 = 110000000000. But let's verify with Python to be sure.

We can compute directly using numpy.linalg.det or sympy. However, for large numbers, floating point may give scientific notation. We'll use sympy for exact integer determinant.

Approach: construct matrix A as sympy Matrix, compute det.

Let's do it. [/THOUGHT] [PYTHON] import sympy as sp

n = 10

Create matrix A: diagonal 20, off-diagonal 10

A = sp.Matrix([[20 if i==j else 10 for j in range(n)] for i in range(n)]) detA = A.det() print(detA) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 110000000000 None [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output shows the determinant is 110000000000. This matches the eigenvalue reasoning: det(A) = 11 * 10^10 = 110000000000. So the answer is 110000000000. [/THOUGHT] \boxed{110000000000}

Final Model Output
110000000000

Comparative Analysis (P9) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1180.7
Solar-Open-100B
211.2
Deepseek-R1-distill-Qwen-32B (high)
114.5
Gemma-3-27B
91.9
Llama-VARCO-8B-Instruct
68.8
Kanana-2-30B-Thinking
30.8
Solar-Pro-2 (31B)(high)
30.2
Gemini-3-Pro-Preview
24.9
Kanana-2-30B-Thinking-2601
19.5
Deepseek-V3.2
19.3
HCX-007(high)
16.9
Grok-4.1-fast
14.3
A.X-4.0 (72B)
13.9
K-EXAONE-236B-A23B
13.4
GPT-oss-20B (high)
11.5
Claude-Opus-4.5
9.4
Qwen3-30B-A3B-2507
8.5
GPT-5.1 (high)
6.9
axk1
5.5

Avg Token Usage

EXAONE-4.0.1-32B (high)
25940.7
Llama-VARCO-8B-Instruct
12475.0
K-EXAONE-236B-A23B
8686.7
Solar-Pro-2 (31B)(high)
6433.3
Kanana-2-30B-Thinking
6327.7
Kanana-2-30B-Thinking-2601
5718.3
Gemini-3-Pro-Preview
4874.3
Gemma-3-27B
4846.0
Solar-Open-100B
4474.7
Grok-4.1-fast
4259.3
Deepseek-R1-distill-Qwen-32B (high)
4045.7
A.X-4.0 (72B)
3684.7
Deepseek-V3.2
3590.0
Claude-Opus-4.5
3365.3
axk1
3197.7
GPT-oss-20B (high)
3077.7
Qwen3-30B-A3B-2507
2697.0
GPT-5.1 (high)
2694.7
HCX-007(high)
1782.3