Problem Analysis #4

17.89s
3,749 toks
Problem Statement

Suppose the following limit is given:

limn[0,n](1+20569nx)69ne(67x)dx=pq,\lim_{n\to\infty} \int_{[0,n]} \left(1+\frac{205}{69n}x\right)^{-69n} e^{(-\frac{6}{7}x)}\,dx=\frac{p}{q},

where pp and qq are positive integers which are relatively prime. Find p2qp^2q.

oindent

Ground Truth
70609
Execution Trace
Reasoning Process

[THOUGHT] To solve this problem, I'll first simplify the integrand inside the limit. Note that as ( n \to \infty ), the expression (\left(1+\frac{205}{69n}x\right)^{-69n}) converges to the exponential function. Specifically, we recognize the standard limit:

[ \lim_{n \to \infty} \left(1 + \frac{a}{n}x\right)^{-n} = e^{-ax}. ]

In our problem, ( a = \frac{205}{69} ), so:

[ \left(1+\frac{205}{69n}x\right)^{-69n} \to e^{-\frac{205}{69}x}. ]

Therefore, the limit of the integrand becomes:

[ e^{-\frac{205}{69}x} \cdot e^{-\frac{6}{7}x} = e^{-\left(\frac{205}{69} + \frac{6}{7}\right)x}. ]

Next, we need to compute the sum:

[ \frac{205}{69} + \frac{6}{7}. ]

To add these fractions, find a common denominator, which is ( 483 ) (since ( 69 \times 7 = 483 )):

[ \frac{205}{69} = \frac{205 \times 7}{483} = \frac{1435}{483}, ] [ \frac{6}{7} = \frac{6 \times 69}{483} = \frac{414}{483}. ]

Now add the fractions:

[ \frac{1435}{483} + \frac{414}{483} = \frac{1849}{483}. ]

The integral then becomes:

[ \lim_{n\to\infty} \int_0^n e^{-\frac{1849}{483}x} , dx. ]

As ( n \to \infty ), this integral evaluates to the improper integral:

[ \int_0^\infty e^{-\frac{1849}{483}x} , dx. ]

This is a standard exponential integral which evaluates to:

[ \int_0^\infty e^{-kx} , dx = \frac{1}{k}, ]

where ( k = \frac{1849}{483} ). Thus, the integral is:

[ \frac{1}{\frac{1849}{483}} = \frac{483}{1849}. ]

We simplify this fraction by finding the greatest common divisor (GCD) of ( 483 ) and ( 1849 ). Using the Euclidean algorithm:

[ 1849 = 483 \times 3 + 420, ] [ 483 = 420 \times 1 + 63, ] [ 420 = 63 \times 6 + 42, ] [ 63 = 42 \times 1 + 21, ] [ 42 = 21 \times 2 + 0. ]

So, (\gcd(483, 1849) = 21). Simplifying:

[ \frac{483}{21} = 23, \quad \frac{1849}{21} = 89. ]

Thus, the fraction simplifies to (\frac{23}{89}), where 23 and 89 are coprime.

Finally, we need to find ( p^2q ) where ( \frac{p}{q} = \frac{23}{89} ):

[ p = 23, \quad q = 89. ]

So:

[ p^2q = 23^2 \times 89 = 529 \times 89. ]

I will now calculate ( 529 \times 89 ) using Python. [/THOUGHT] [PYTHON] p = 23 q = 89 result = p**2 * q print(result)

Tool Output
[PYTHON OUTPUT] 47081 None [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The calculation of ( 529 \times 89 ) using Python yielded the result 47081. Therefore, the value of ( p^2q ) is: [ \boxed{47081} ]

Final Model Output
47081

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

Deepseek-R1-distill-Qwen-32B (high)
140.9
Deepseek-V3.2
123.2
Gemini-3-Pro-Preview
90.8
GPT-oss-20B (high)
60.4
Solar-Pro-2 (31B)(high)
60.2
Grok-4.1-fast
38.4
HCX-007(high)
31.5
Gemma-3-27B
31.4
Qwen3-30B-A3B-2507
28.9
Llama-VARCO-8B-Instruct
21.3
GPT-5.1 (high)
19.0
Claude-Opus-4.5
16.4
A.X-4.0 (72B)
16.0
EXAONE-4.0.1-32B (high)
3.7

Avg Token Usage

Gemini-3-Pro-Preview
11241.0
Deepseek-V3.2
9874.7
Solar-Pro-2 (31B)(high)
9831.3
GPT-oss-20B (high)
9757.0
Grok-4.1-fast
7671.7
Qwen3-30B-A3B-2507
6266.7
HCX-007(high)
4190.3
Deepseek-R1-distill-Qwen-32B (high)
3984.0
Claude-Opus-4.5
3858.3
A.X-4.0 (72B)
3485.3
EXAONE-4.0.1-32B (high)
3238.3
GPT-5.1 (high)
3067.7
Llama-VARCO-8B-Instruct
2088.3
Gemma-3-27B
1705.7