Problem Analysis #9

7.15s
3,512 toks
Problem Statement

Consider the 10$$\times$$ 10 real symmetric matrix

A=[20101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020101010101010101010102010101010101010101010201010101010101010101020].A = \left[ \begin{array}{cccccccccc} 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 & 10\\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 20 \end{array} \right].

Calculate

N:=det(A).N := \det(A).
Ground Truth
110000000000
Execution Trace
Reasoning Process

[THOUGHT] We need to compute the determinant of a 10×10 symmetric matrix A. The matrix has a special structure: diagonal entries are 20, off-diagonal entries are 10. So A = 10 * J + 10 * I, where J is the all-ones matrix of size 10×10, and I is the identity matrix. Actually: A = 10J + 10I? Let's check: diagonal entries: 20 = 10 + 10, off-diagonal: 10 = 10 + 0. So A = 10J + 10I? Wait: J has ones everywhere, so 10J gives 10 on all entries. Then adding 10I gives diagonal 20, off-diagonal 10. Yes, A = 10J + 10I.

We need det(A). For n×n matrix of form aJ + bI, eigenvalues are: one eigenvalue = an + b (for eigenvector all-ones), and the rest (n-1) eigenvalues = b (for eigenvectors orthogonal to all-ones). Here a=10, b=10, n=10. So eigenvalues: λ1 = 1010 + 10 = 110, λ2...λ10 = 10. Determinant = product of eigenvalues = 110 * 10^9 = 110 * 1,000,000,000 = 110,000,000,000.

But we should verify with Python to avoid arithmetic errors.

Let's compute determinant directly using numpy or sympy. </think>

[PYTHON] import numpy as np

Construct matrix A

n = 10 A = np.full((n, n), 10) # all entries 10 np.fill_diagonal(A, 20) # set diagonal to 20

Compute determinant

det = np.linalg.det(A) print("Determinant (float):", det)

Since determinant is an integer, we can round to nearest integer

det_int = int(round(det)) print("Determinant (integer):", det_int)

Alternatively, compute using eigenvalues

eigvals = np.linalg.eigvals(A) print("Eigenvalues:", eigvals) print("Product of eigenvalues:", np.prod(eigvals)) print("Product (rounded):", int(round(np.prod(eigvals)))) [/PYTHON]

Tool Output
[PYTHON OUTPUT] Determinant (float): 109999999999.99947 Determinant (integer): 110000000000 Eigenvalues: [ 10.+0.00000000e+00j 110.+0.00000000e+00j 10.+0.00000000e+00j 10.+1.34856362e-15j 10.-1.34856362e-15j 10.+0.00000000e+00j 10.+0.00000000e+00j 10.+0.00000000e+00j 10.+3.20053662e-16j 10.-3.20053662e-16j] Product of eigenvalues: (109999999999.99971+9.576445780121409e-22j) Product (rounded): 110000000000 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output shows the determinant as approximately (1.1 \times 10^{11}), specifically 110000000000 when rounded to the nearest integer. The eigenvalues confirm this: one eigenvalue is 110 and the rest are 10 (with negligible numerical errors). The product of eigenvalues is (110 \times 10^9 = 110000000000). This matches the integer determinant.

[/THOUGHT] \boxed{110000000000}

Final Model Output
110000000000

Comparative Analysis (P9) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1180.7
Solar-Open-100B
211.2
Deepseek-R1-distill-Qwen-32B (high)
114.5
Gemma-3-27B
91.9
Llama-VARCO-8B-Instruct
68.8
Kanana-2-30B-Thinking
30.8
Solar-Pro-2 (31B)(high)
30.2
Gemini-3-Pro-Preview
24.9
Kanana-2-30B-Thinking-2601
19.5
Deepseek-V3.2
19.3
HCX-007(high)
16.9
Grok-4.1-fast
14.3
A.X-4.0 (72B)
13.9
K-EXAONE-236B-A23B
13.4
GPT-oss-20B (high)
11.5
Claude-Opus-4.5
9.4
Qwen3-30B-A3B-2507
8.5
GPT-5.1 (high)
6.9
axk1
5.5

Avg Token Usage

EXAONE-4.0.1-32B (high)
25940.7
Llama-VARCO-8B-Instruct
12475.0
K-EXAONE-236B-A23B
8686.7
Solar-Pro-2 (31B)(high)
6433.3
Kanana-2-30B-Thinking
6327.7
Kanana-2-30B-Thinking-2601
5718.3
Gemini-3-Pro-Preview
4874.3
Gemma-3-27B
4846.0
Solar-Open-100B
4474.7
Grok-4.1-fast
4259.3
Deepseek-R1-distill-Qwen-32B (high)
4045.7
A.X-4.0 (72B)
3684.7
Deepseek-V3.2
3590.0
Claude-Opus-4.5
3365.3
axk1
3197.7
GPT-oss-20B (high)
3077.7
Qwen3-30B-A3B-2507
2697.0
GPT-5.1 (high)
2694.7
HCX-007(high)
1782.3