Problem Analysis #23

92.03s
2,719 toks
Problem Statement

Consider the ellipsex2a2+y2b2=1(0<b<a),\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (0 < b < a),and suppose that one focus of this ellipse coincides with the focus of the parabolay2=4px(p>0).y^2 = 4px \qquad (p > 0).Let the two intersection points of the parabola and the ellipse be denoted byP1\mathrm{P}_1 and P2\mathrm{P}_2.Let AA be the intersection point of the tangent line to the parabola at P1\mathrm{P}_1and the tangent line to the parabola at P2\mathrm{P}_2.Given that the angle P1AP2=60\angle \mathrm{P}_1 A \mathrm{P}_2 = 60^\circ, and that for any real number tt,t\lfloor t \rfloor denotes the greatest integer not exceeding tt, determine the value ofa3p3.\left\lfloor \frac{a^3}{p^3} \right\rfloor .oindent

Ground Truth
100
Execution Trace
Reasoning Process

[THOUGHT] To solve this problem, we need to find the relationship between the parameters (a), (b), and (p) given the geometric conditions.

First, we identify the foci of the ellipse. For the ellipse (\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1) with (a > b), the foci are located at ((\pm c, 0)) where (c = \sqrt{a^2 - b^2}).

The focus of the parabola (y^2 = 4px) is at ((p, 0)). According to the problem, one focus of the ellipse coincides with the focus of the parabola. Therefore, (c = p).

Thus, we have: [ p = \sqrt{a^2 - b^2} ] Squaring both sides gives: [ p^2 = a^2 - b^2 ] [ b^2 = a^2 - p^2 ]

Next, we consider the intersection points (\mathrm{P}_1) and (\mathrm{P}_2) of the parabola and the ellipse. Substitute (y^2 = 4px) into the ellipse equation: [ \frac{x^2}{a^2} + \frac{4px}{b^2} = 1 ] Using (b^2 = a^2 - p^2), we substitute: [ \frac{x^2}{a^2} + \frac{4px}{a^2 - p^2} = 1 ] Multiply through by (a^2(a^2 - p^2)) to clear the denominators: [ x^2(a^2 - p^2) + 4pxa^2 = a^2(a^2 - p^2) ] [ x^2a^2 - x^2p^2 + 4pxa^2 = a^4 - a^2p^2 ] [ x^2a^2 + 4pxa^2 - x^2p^2 = a^4 - a^2p^2 ] [ x^2(a^2 - p^2) + 4pxa^2 = a^4 - a^2p^2 ] [ x^2(a^2 - p^2) + 4pxa^2 = a^2(a^2 - p^2) ] Factor out (a^2 - p^2): [ (x^2 + 4px) = a^2 ] This is a quadratic equation in (x): [ x^2 + 4px - a^2 = 0 ] Using the quadratic formula (x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}) with (a = 1), (b = 4p), and (c = -a^2), we get: [ x = \frac{-4p \pm \sqrt{(4p)^2 + 4a^2}}{2} ] [ x = \frac{-4p \pm \sqrt{16p^2 + 4a^2}}{2} ] [ x = \frac{-4p \pm 2\sqrt{4p^2 + a^2}}{2} ] [ x = -2p \pm \sqrt{4p^2 + a^2} ]

Thus, the (x)-coordinates of (\mathrm{P}_1) and (\mathrm{P}_2) are: [ x_1 = -2p + \sqrt{4p^2 + a^2} ] [ x_2 = -2p - \sqrt{4p^2 + a^2} ]

The corresponding (y)-coordinates are: [ y_1 = \pm \sqrt{4p(-2p + \sqrt{4p^2 + a^2})} = \pm 2\sqrt{p\sqrt{4p^2 + a^2} - 2p^2} ] [ y_2 = \pm \sqrt{4p(-2p - \sqrt{4p^2 + a^2})} = \pm 2\sqrt{-p\sqrt{4p^2 + a^2} - 2p^2} ]

Since (y_2) is imaginary, we only consider (y_1). Thus, the intersection points are: [ \mathrm{P}_1 = \left(-2p + \sqrt{4p^2 + a^2}, 2\sqrt{p\sqrt{4p^2 + a^2} - 2p^2}\right) ] [ \mathrm{P}_2 = \left(-2p + \sqrt{4p^2 + a^2}, -2\sqrt{p\sqrt{4p^2 + a^2} - 2p^2}\right) ]

The tangent lines to the parabola at (\mathrm{P}_1) and (\mathrm{P}_2) are: [ yy_1 = 2p(x + x_1) ] [ yy_2 = 2p(x + x_2) ]

Substituting (y_1) and (y_2) and simplifying, we find that the tangent lines intersect at the point (A = (0, 0)).

Given (\angle \mathrm{P}_1 A \mathrm{P}_2 = 60^\circ), we use the fact that the angle between the tangents to a parabola at its points of intersection with another conic section is related to the eccentricity of the conic section. For an ellipse, the angle (\theta) between the tangents at the points of intersection with a parabola is given by: [ \cos(\theta) = \frac{b^2}{a^2} ]

Given (\theta = 60^\circ), we have: [ \cos(60^\circ) = \frac{1}{2} ] [ \frac{b^2}{a^2} = \frac{1}{2} ] [ b^2 = \frac{a^2}{2} ]

Substitute (b^2 = a^2 - p^2): [ \frac{a^2}{2} = a^2 - p^2 ] [ p^2 = a^2 - \frac{a^2}{2} ] [ p^2 = \frac{a^2}{2} ] [ p = \frac{a}{\sqrt{2}} ]

Thus, we need to find: [ \left\lfloor \frac{a^3}{p^3} \right\rfloor ] [ p = \frac{a}{\sqrt{2}} \Rightarrow p^3 = \left(\frac{a}{\sqrt{2}}\right)^3 = \frac{a^3}{2\sqrt{2}} ] [ \frac{a^3}{p^3} = \frac{a^3}{\frac{a^3}{2\sqrt{2}}} = 2\sqrt{2} ] [ 2\sqrt{2} \approx 2 \times 1.414 = 2.828 ]

Finally, we take the floor value: [ \left\lfloor 2.828 \right\rfloor = 2 ]

[/THOUGHT] \boxed{2}

Final Model Output
2

Comparative Analysis (P23) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
1662.1
Kanana-2-30B-Thinking-2601
181.9
Llama-VARCO-8B-Instruct
139.5
Kanana-2-30B-Thinking
121.8
A.X-4.0 (72B)
92.0
Gemini-3-Pro-Preview
88.2
Deepseek-V3.2
69.9
Solar-Pro-2 (31B)(high)
69.5
K-EXAONE-236B-A23B
54.4
Grok-4.1-fast
51.6
GPT-5.1 (high)
50.4
GPT-5.2 (high)
33.7
Solar-Open-100B
26.0
Claude-Opus-4.5
24.1
HCX-007(high)
23.8
axk1
10.8
EXAONE-4.0.1-32B (high)
9.3

Avg Token Usage

K-EXAONE-236B-A23B
172405.7
Kanana-2-30B-Thinking-2601
34109.5
Kanana-2-30B-Thinking
19167.0
Gemini-3-Pro-Preview
14819.0
Solar-Pro-2 (31B)(high)
11576.0
Deepseek-V3.2
11518.0
Grok-4.1-fast
10780.0
Claude-Opus-4.5
6166.0
Solar-Open-100B
6006.0
K-EXAONE-236B-A23B
5885.0
EXAONE-4.0.1-32B (high)
5468.0
GPT-5.1 (high)
5435.0
GPT-5.2 (high)
5124.0
Llama-VARCO-8B-Instruct
3993.0
HCX-007(high)
3875.0
axk1
3484.0
A.X-4.0 (72B)
2719.0