Problem Analysis #40

133.17s
22,215 toks
Problem Statement

Consider the solid whose base in the xyxy-plane is the region bounded by the curvey=x+xlnx,y = \sqrt{x + x \ln x},the xx-axis, and the vertical lines x=1x = 1 and x=2x = 2. The cross-sections of this solid taken by planes perpendicular to the xx-axis are all equilateral triangles. Find the volume of this solid. [3 points]If the volume is 3(p+qln2)r\frac{\sqrt{3}(p + q\ln 2)}{r}, compute p+q+rp+q+r.\

Ground Truth
27
Execution Trace
Reasoning Process

To determine the volume of the solid described, we begin by analyzing the geometry and applying the correct integration technique.


Understanding the Problem

We are given a region in the xyxy-plane bounded by:

  • The curve y=x+xlnxy = \sqrt{x + x \ln x}
  • The x-axis (y=0y = 0)
  • Vertical lines x=1x = 1 and x=2x = 2

This region is revolved (in a sense) such that cross-sections perpendicular to the x-axis are equilateral triangles. The key here is that the side length of each triangle corresponds to the height of the curve at a given xx, i.e., s=x+xlnxs = \sqrt{x + x \ln x}.

--- at the origin of the solid, the cross-sectional area is:

A(x)=34s2=34(x+xlnx)A(x) = \frac{\sqrt{3}}{4} s^2 = \frac{\sqrt{3}}{4} (x + x \ln x)

Therefore, the volume VV of the solid is:

V=12A(x)dx=3412(x+xlnx)dxV = \int_1^2 A(x)\, dx = \frac{\sqrt{3}}{4} \int_1^2 (x + x \ln x)\, dx

Computing the Integral

We now compute:

12(x+xlnx)dx\int_1^2 (x + x \ln x)\, dx

Break it into two parts:

  1. 12xdx=[x22]12=4222=212=32\int_1^2 x\, dx = \left[ \frac{x^2}{2} \right]_1^2 = \frac{4}{2} - \frac{2}{2} = 2 - \frac{1}{2} = \frac{3}{2}

  2. For 12xlnxdx\int_1^2 x \ln x\, dx, use integration by parts:

    • Let u=lnxu = \ln x, dv=xdxdv = x\, dx
    • Then du=1xdxdu = \frac{1}{x} dx, v=x22v = \frac{x^2}{2}
xlnxdx=x22lnxx221xdx=x22lnx12xdx=x22lnxx24\int x \ln x\, dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x}\, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x\, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4}

Evaluate from 1 to 2:

  • At x=2x = 2: 42ln244=2ln21\frac{4}{2} \ln 2 - \frac{4}{4} = 2 \ln 2 - 1
  • At x=1x = 1: 12ln114=014=14\frac{1}{2} \ln 1 - \frac{1}{4} = 0 - \frac{1}{4} = -\frac{1}{4}

So,

12xlnxdx=(2ln21)(14)=2ln21+14=2ln234\int_1^2 x \ln x\, dx = (2 \ln 2 - 1) - (-\tfrac{1}{4}) = 2 \ln 2 - 1 + \tfrac{1}{4} = 2 \ln 2 - \tfrac{3}{4}

Now add both parts:

12(x+xlnx)dx=32+(2ln234)=34+2ln2\int_1^2 (x + x \ln x)\, dx = \frac{3}{2} + (2 \ln 2 - \tfrac{3}{4}) = \frac{3}{4} + 2 \ln 2

Thus, the volume becomes:

V=34(2ln2+34)=348ln2+34=3(3+8ln2)16V = \frac{\sqrt{3}}{4} \left(2 \ln 2 + \frac{3}{4}\right) = \frac{\sqrt{3}}{4} \cdot \frac{8 \ln 2 + 3}{4} = \frac{\sqrt{3}(3 + 8 \ln 2)}{16}

Final Answer Format

The problem states that the volume is of the form:

3(p+qln2)r\frac{\sqrt{3}(p + q \ln 2)}{r}

From our calculation:

V=3(3+2ln2)4(Wait! This contradicts earlier steps)V = \frac{\sqrt{3}(3 + 2 \ln 2)}{4} \quad \text{(Wait! This contradicts earlier steps)}

Wait — no. Wait, we had:

12(x+xlnx)dx=34+2ln2\int_1^2 (x + x \ln x)\, dx = \frac{3}{4} + 2 \ln 2

So:

V=34(2ln2+34)=348ln2+34=3(3+8ln2)16V = \frac{\sqrt{3}}{4} \left(2 \ln 2 + \frac{3}{4} \right) = \frac{\sqrt{3}}{4} \cdot \frac{8 \ln 2 + 3}{4} = \frac{\sqrt{3}(3 + 8 \ln 2)}{16}

Hence, the volume is:

V=3(3+8ln2)16V = \frac{\sqrt{3}(3 + 8 \ln 2)}{16}

So, comparing with the expression 3(p+qln2)r\frac{\sqrt{3}(p + q \ln 2)}{r}, we identify:

  • p=3p = 3
  • q=8q = 8
  • r=16r = 16

Final Calculation

p+q+sl=3+8+16=27p + q + sl = 3 + 8 + 16 = \boxed{27}

✅ Final Answer:

27\boxed{27}
Reasoning Process

[THOUGHT] First, I need to verify the integral of (x + x ln x) from 1 to 2 using Python to ensure my earlier calculation is correct. Let's compute it numerically.

[PYTHON] import numpy as np from scipy.integrate import quad

def integrand(x): return x + x * np.log(x)

integral_value, error = quad(integrand, 1, 2) integral_value [/PYTHON]

Tool Output
[PYTHON OUTPUT] 2.1362943611198904 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] We need to verify the volume calculation using Python to ensure accuracy. The volume is given by the integral of the cross-sectional area, which is (√3/4) times the integral of (x + x ln x) from 1 to 2. Let's compute this step-by-step using Python to confirm the integral value and then compute the volume.

[PYTHON] import numpy as np from scipy.integrate import quad

Define the integrand for the integral part

def integrand(x): return x + x * np.log(x)

Compute the definite integral from 1 to 2

integral_value, error = quad(integrand, 1, 2) print("Integral value (x + x ln x) from 1 to 2:", integral_value)

Compute the volume: (sqrt(3)/4) * integral_value

sqrt3 = np.sqrt(3) volume = (sqrt3 / 4) * integral_value print("Volume:", volume)

Express the volume as (sqrt(3)(p + q ln 2))/r

The integral is (3 + 8 ln 2)/4, so volume = (sqrt(3)/4) * (3 + 8 ln 2)/4 = (sqrt(3)(3 + 8 ln 2))/16

Thus p=3, q=8, r=16

p = 3 q = 8 r = 16 print("p + q + r =", p + lang print("Volume in terms of p, q, r:", (sqrt3 * (p + q * np.log(2))) / r) [/PYTHON]

Tool Output
[PYTHON OUTPUT] SyntaxError: '(' was never closed (<string>, line 23) [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Let's recompute the integral properly and then compute the volume.

[PYTHON] import numpy as np from scipy. integrate import quad

Define the integrand for the integral part

def integrand(x): return x + x * np.log(x)

Compute the definite integral from 1 to 2

integral_value, error = quad(integrand, 1, 2) print("Integral value (x + x ln x) from 1 to 2:", integral_value)

Compute the volume: (sqrt(3)/4) * integral_value

sqrt3 = np.sqrt(3) volume = (sqrt3 / 4) * integral_value print("Volume:", volume)

The integral is 3/4 + 2 ln 2, so volume = (sqrt(3)/4) * (3/4 + 2 ln 2) = (sqrt(3)(3 + 8 ln 2))/16

Thus p=3, q=8, r=16

p = 3 q = 8 r = 16 print("p + q + r =", p + q + r)

Verify the volume expression

volume_expr = (np.sqrt(3) * (p + q * np.log(2))) / r print("Volume from expression:", volume_expr) print("Difference from direct volume:", abs(volume - volume_expr)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] Integral value (x + x ln x) from 1 to 2: 2.1362943611198904 Volume: 0.9250425933456362 p + q + r = 27 Volume from expression: 0.9250425933456363 Difference from direct volume: 1.1102230246251565e-16 [/PYTHON OUTPUT]
Reasoning Process

\boxed{27}

Final Model Output
27

Comparative Analysis (P40) (Average across runs)

Avg Time Taken

Solar-Open-100B
622.6
K-EXAONE-236B-A23B
191.8
Gemini-3-Pro-Preview
184.9
K-EXAONE-236B-A23B
68.6
Llama-VARCO-8B-Instruct
46.8
Kanana-2-30B-Thinking
40.3
Solar-Pro-2 (31B)(high)
33.8
HCX-007(high)
33.3
Kanana-2-30B-Thinking-2601
31.5
GPT-5.2 (high)
31.0
Deepseek-V3.2
25.5
A.X-4.0 (72B)
24.1
Claude-Opus-4.5
21.5
Grok-4.1-fast
19.4
GPT-5.1 (high)
15.9
axk1
5.8
EXAONE-4.0.1-32B (high)
3.0

Avg Token Usage

K-EXAONE-236B-A23B
38155.0
K-EXAONE-236B-A23B
26492.7
Kanana-2-30B-Thinking-2601
8668.5
Kanana-2-30B-Thinking
8605.0
Solar-Pro-2 (31B)(high)
6246.0
GPT-5.2 (high)
6219.0
Gemini-3-Pro-Preview
5568.0
Solar-Open-100B
5538.0
Claude-Opus-4.5
5101.0
Grok-4.1-fast
4946.0
HCX-007(high)
4786.0
Llama-VARCO-8B-Instruct
4676.0
Deepseek-V3.2
4363.0
GPT-5.1 (high)
3043.0
EXAONE-4.0.1-32B (high)
2876.0
axk1
2573.0
A.X-4.0 (72B)
2231.0