Problem Analysis #38

186.16s
33,656 toks
Problem Statement

Let aa be a natural number with a6a \leq 6. Using one die and one coin, perform the following experiment.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}Roll the die once.\quad-- If the outcome is less than or equal to aa, toss the coin 55 times and record the number of heads.\quad-- If the outcome is greater than aa, toss the coin 33 times and record the number of heads.\end{minipage}}\end{center}Repeat this experiment 1920019200 times, and let XX be the number of times the recorded value is 33. Suppose that E(X)=4800\text{E}(X) = 4800. Using the standard normal table on the right, computeP(X4800+30a),\text{P}(X \leq 4800 + 30a),and let this value be kk. Compute 1000 $$\times$$ k. [4 points]\begin{center}\begin{tabular}{|c|c|}\hlinezz & P(0Zz)\text{P}(0 \leq Z \leq z) \\hline0.5 & 0.191 \\hline1.0 & 0.341 \\hline1.5 & 0.433 \\hline2.0 & 0.477 \\hline2.5 & 0.494 \\hline3.0 & 0.499 \\hline\end{tabular}\end{center}\

Ground Truth
977
Execution Trace
Reasoning Process

To solve the problem, we begin by analyzing the structure of the experiment and how it relates to the expectation E(X)=4800\text{E}(X) = 4800.


Step 1: Determine the value of aa

We are told that:

  • A die is rolled.
  • If the outcome is less than or equal to aa, we toss a coin 5 times and record the number of heads.
  • If the outcome is greater than aa, we toss a coin 3 times and record the number of heads.
  • This entire process is repeated n=19200n = 19200 times.
  • Let XX be the number of times the recorded value is exactly 3 (i.e., 3 heads in the coin tosses).

We're given that E(X)=4800\text{E}(X) = 4800. Our goal is to compute P(X4800+30a)P(X \leq 4800 + 30a), which will be some value kk, and then find 1000k1000k.


Step 2: Compute the probability pp of success in one trial

Let’s compute the probability pp that in a single trial, the number of heads is exactly 3.

  • With probability a6\frac{a}{6}, the die roll is a\leq a, so we toss the coin 5 times.

    • The probability of getting exactly 3 heads in 5 tosses is: (53)(12)5=1032=516\binom{5}{3} \left(\frac{1}{2}\right)^5 = \frac{10}{32} = \frac{5}{16}
  • With probability 6a6\frac{6 - a}{6}, the die roll is >a> a, so we toss the coin 3 times.

    • The probability of getting exactly 3 heads in 3 tosses is: \binom{3{3} \left(\frac{1}{2}\right)^3 = \frac{1}{8}

Thus, the total probability pp of recording a 3 in one trial is:

p=a6516+6a618=5a96+6a48p = \frac{a}{6} \cdot \frac{5}{16} + \frac{6 - a}{6} \cdot \frac{1}{8} = \frac{5a}{96} + \frac{6 - a}{48}

Get a common denominator (96):

p=10a192+2(6a)192=10a+122a192=8a+12192=4a+696p = \frac{10a}{192} + \frac{2(6 - a)}{192} = \frac{10a + 12 - 2a}{192} = \frac{8a + 12}{192} = \frac{4a + 6}{96}

But earlier we derived:

p=a+432p = \frac{a + 4}{32}

Equating the two expressions for pp:

a+432=4a+696\frac{a + 4}{32} = \frac{4a + 6}{96}

Cross-multiplying:

96(a+1)=32(4a+6)96a+96=128a+19232a=96a=3(Wait! That’s not possible)96(a + 1) = 32(4a + 6) \\ 96a + 96 = 128a + 192 \\ -32a = 96 \Rightarrow a = -3 \quad \text{(Wait! That's not possible)}

So let's recheck the derivation.

Actually, from earlier:

p=a+432p = \frac{a + 4}{32}

Given E(X)=19200p=4800\text{E}(X) = 19200 \cdot p = 4800, we get:

p=480019200=14p = \frac{4800}{19200} = \frac{1}{4}

So:

a+432=14a+4=8a=4\frac{a + 4}{32} = \frac{1}{4} \Rightarrow a + 4 = 8 \Rightarrow a = 4

Confirmed: a=4a = 4


Step 3: Use Normal Approximation for XX

Now, XBinomial(n=19200,p=14)X \sim \text{Binomial}(n = 19200, p = \frac{1}{4})

  • Mean: μ=np=1920014=4800\mu = np = 19200 \cdot \frac{1}{4} = 4800
  • Variance: σ2=np(1p)=192001434=3600\sigma^2 = np(1 - p) = 19200 \cdot \frac{1}{4} \cdot \frac{3}{4} = 3600
  • Standard deviation: σ=3600=60\sigma = \sqrt{3600} = 60

We are asked to compute:

P(X4800+30a)=P(X4800+120)=P(X4920)P(X \leq 4800 + 30a) = P(X \leq 4800 + 120) = P(X \leq 4920)

Use the normal approximation:

Z=4920480060=12060=2.0Z = \frac{4920 - 4800}{60} = \frac{120}{60} = 2.0

So,

P(X4920)P(Z2.0)P(X \leq 4920) \approx P(Z \leq 2.0)

From the standard normal table:

P(0Z2.0)=0.477P(Z2.0)=0.5+0.477=0.977P(0 \leq Z \leq 2.0) = 0 .477 \Rightarrow P(Z \leq 2.0) = 0.5 + 0.477 = 0.977

Thus, k=0.977k = 0.977


Step 4: Final Calculation

1000×k=1000×0.977=9771000 \times k = 1000 \times 0.977 = \boxed{977}

✅ Final Answer:

977\boxed{977}
Reasoning Process

[THOUGHT] We need to solve for aa, confirm it's 4, then compute the z-score for X4800+30aX \leq 4800 + 30a, use the normal approximation, and find 1000k1000k.

First, calculate pp, the probability of success (recording 3 heads) in one trial. The expectation E(X)=19200p=4800    p=480019200=0.25\text{E}(X) = 19200 \cdot p = 4800 \implies p = \frac{4800}{19200} = 0.25.

The probability pp is also given by:

p=a6(53)(12)5+6a6(33)(12)3p = \frac{a}{6} \cdot \binom{5}{3} \left(\frac{1}{2}\right)^5 + \frac{6 - a}{6} \cdot \binom{3}{3} \left(\frac{1}{2}\right)^3 =a61032+6a618=5a192+6a48=5a+4(6a)96=8a+2496=a+312= \frac{a}{6} \cdot \frac{10}{32} + \frac{6 - a}{6} \cdot \frac{1}{8} = \frac{5a}{192} + \frac{6 - a}{48} = \frac{5a + 4(6 - a)}{96} = \frac{8a + 24}{96} = \frac{a + 3}{12}

Wait, earlier calculation was wrong. Let's recalculate pp correctly:

For aa (die ≤ aa): probability of 3 heads in 5 tosses is (53)/25=10/32=5/16=0.3125\binom{5}{3}/2^5 = 10/32 = 5/16 = 0.3125.

For 6a6 - a (die > aa): probability of 3 heads in 3 tosses is 1/8=0.1251/8 = 0.125.

Thus,

p=a6516+6a618=5a96+6a48p = \frac{a}{6} \cdot \frac{5}{16} + \frac{6 - a}{6} \cdot \frac{1}{8} = \frac{5a}{96} + \frac{6 - a}{48}

Convert to common denominator 96:

p=10a+2(6a)96=10a+122a96=8a+1296=2a+324p = \frac{10a + 2(6 - a)}{96} = \frac{10a + 12 - 2a}{96} = \frac{8a + 12}{96} = \frac{2a + 3}{24}

Wait, but earlier we had p=(a+4)/32p = (a + 4)/32. Let's check with a=4a = 4:

(24+3)/24=11/240.458(2*4 + 3)/24 = 11/24 ≈ 0.458, which is wrong. I must have made a mistake in the algebra.

Let's recalculate pp correctly:

a61032+6a618=10a192+6a48=10a+4(6a)96=10a+244a96=6a+2496=a+416\frac{a}{6} \cdot \frac{10}{32} + \frac{6 - a}{6} \cdot \frac{1}{8} = \frac{10a}{192} + \frac{6 - a}{48} = \frac{10a + 4(6 - a)}{96} = \frac{10a + 24 - 4a}{96} = \frac{6a + 24}{96} = \frac{a + 4}{16}.

Ah, there we go. I missed a factor earlier. So p=(a+4)/16p = (a + 4)/16? Wait no:

Wait 10a/192=5a/9610a/192 = 5a/96, and $ (6 - a)/48 = 12/96? No, 482=96, so (6 - a)/48 = 2(6 - a)/96 = (12 - 2a)/96. So total p = (5a + 12 - 2a)/96 = (3a + 12)/96 = (a + 4)/32. Yes, that's correct. So 3a + 12 = 3(a + 4), so 3(a + 4)/96 = (a + 4)/32. So p = (a + 4)/32.

Given p = 0.25, then (a + 4)/32 = 0.25 → a + 4 = 8 → a = 4. Correct.

Now, 30a = 120, so the upper limit is 4800 + 120 = 4920.

Mean μ = 4800, variance σ² = 19200 * 0.25 * 0.75 = 3600, so σ = 60.

Z = (4920 - 4800)/60 = 120/60 = 2.0.

From the table, P(0 ≤ Z ≤ 2.0) = 0.477, so P(Z ≤ 2.0) = 0.5 + 0.477 = 0.977.

Thus, k = 0.977, so 1000k = 977.

Let's use Python to confirm the z-score and probability.

[PYTHON]

Confirm a

n = 19200 E_X = 4800 p = E_X / n # p = 0.25 a = 32 * p - 4 print("a =", a) # Should be 4.0

Calculate upper limit

upper_limit = E_X + 30 * a print("Upper limit (4800 + 30a) =", upper_limit) # 4920.0

Calculate z-score

import math mu = E_X sigma = math.sqrt(n * p * (1 - p)) z = (upper_limit - mu) / sigma print("z-score =", z) # Should be 2.0

From table, P(0 ≤ Z ≤ 2.0) = 0.477, so P(Z ≤ 2.0) = 0.5 + 0.477 = 0.977

k = 0.5 + 0.477 print("k =", k) # 0.977 print("1000k =", 1000 * k) # 977.0 [/PYTHON]

Tool Output
[PYTHON OUTPUT] a = 4.0 Upper limit (4800 + 30a) = 4920.0 z-score = 2.0 k = 0.977 1000k = 977.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The problem requires finding aa, confirming it's 4, then computing the z-score for X4800+30aX \leq 4800 + 30a, using the standard normal table to find the cumulative probability, and then scaling by 1000.

First, calculate aa:

  • E(X)=19200p=4800    p=0.25\text{E}(X) = 19200 \cdot p = 4800 \implies p = 0.25
  • p=a+432    0.25=a+432    a+4=8    a=4p = \frac{a + 4}{32} \implies 0.25 = \frac{a + 4}{32} \implies a + 4 = 8 \implies a = 4

Now, compute 4800+30a=4800+120=49204800 + 30a = 4800 + 120 = 4920.

For the normal approximation:

  • Mean μ=4800\mu = 4800
  • Variance σ2=192000.250.75=3600    σ=60\sigma^2 = 19200 \cdot 0.25 \cdot 0.75 = 3600 \implies \sigma = 60
  • Z-score: z=4920480060=2.0z = \frac{4920 - 4800}{60} = 2.0

From the table, P(0Z2.0)=0.477    P(Z2.0)=0.5+0.477=0.977\text{P}(0 \leq Z \leq 2.0) = 0.477 \implies \text{P}(Z \leq 2.0) = 0.5 + 0.477 = 0.977

Thus, k=0.977    1000k=977k = 0.977 \implies 1000k = 977.

[PYTHON] import math

Given values

n = 19200 E_X = 4800 p = E_X / n # p = 0.25

Calculate a

a = 32 * p - 4 # From p = (a + 4)/32 print("a =", a) # Output: 4.0

Upper limit

upper_limit = E_X + 3 </think>

[THOUGHT]

We need to solve for aa, confirm it's 4, then compute the z-score for X4800+30aX \leq 4800 + 30a, use the normal approximation, and find $ 1000.

First, calculate aa:

  • E(X)=19200p=4800    p=480019200=0.25\text{E}(X) = 19200 \cdot p = 4800 \implies p = \frac{4800}{19200} = 0.25
  • p=a6(53)(12)5+6a6(33)(12)3p = \frac{a}{6} \cdot \binom{5}{3} \left(\frac{1}{2}\right)^5 + \frac{6 - a}{6} \cdot \binom{3}{3} \left(\frac{1}{2}\right)^3
  • p=a61032+6a618=5a96+6a48=5a+2(6a)96=3a+1296p = \frac{a}{6} \cdot \frac{10}{32} + \frac{6 - a}{6} \cdot \frac{1}{8} = \frac{5a}{96} + \frac{6 - a}{48} = \frac{5a + 2(6 - a)}{96} = \frac{3a + 12}{96}
  • Wait, earlier correct expression: p=a+432p = \frac{a + 4}{32}
  • So a+432=0.25    a+4=8    a=4\frac{a + 4}{32} = 0.25 \implies a + 4 = 8 \implies a = 4

Now, 30a=12030a = 120, so the upper limit is 4800+120=49204800 + 120 = 4920.

For normal approximation:

  • Mean μ=4800\mu = 4800
  • Variance σ2=192000.250.75=3600    σ=60\sigma^2 = 19200 \cdot 0.25 \cdot 0.75 = 3600 \implies \sigma = 60
  • Z-score: z=4920480060=2.0z = \frac{4920 - 4800}{60} = 2.0

From the table, P(0Z2.0)=0.477    P(Z2.0)=0.5+0.477=0.977\text{P}(0 \leq Z \leq 2.0) = 0.477 \implies \text{P}(Z \leq 2.0) = 0.5 + 0.477 = 0.977

Thus, k=0.977    1000k=977k = 0.977 \implies 1000k = 977

Let's verify with Python: [PYTHON] import math

Given values

n = 19200 E_X = 4800 p = E_X / n # p = 0.25

Calculate a from p = (a + 4)/32

a = 32 * p - 4 print("a =", a) # Output: 4.0

Upper limit

upper_limit = E_X + 30 * a print("Upper limit (4800 + 30a) =", upper_limit) # Output: 4920.0

Calculate z-score

mu = E_X sigma = math.sqrt(n * p * (1 - p)) z = (upper_limit - mu) / sigma print("z-score =", z) # Output: 2.0

From table, P(0 ≤ Z ≤ 2.0) = 0.477

k = 0.5 + 0.477 print("k =", k) # Output: 0.977

Final answer

result = 1000 * k print("1000k =", result) # Output: 977.0 [/PYTHON] [THOUGHT] All calculations confirm a=4a = 4, z-score =2.0= 2.0, k=0.977k = 0.977, and 1000k=9771000k = 977.

\boxed{977}

Tool Output
[PYTHON OUTPUT] SyntaxError: unterminated string literal (detected at line 18) (<string>, line 18) [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] First, I need to find the value of aa using the given expectation E(X)=4800\text{E}(X) = 4800. Then, I'll compute the required probability using the normal approximation.

[PYTHON] import math

Given values

n = 19200 E_X = 4800 p = E_X / n # p = 0.25

Calculate a from p = (a + 4)/32

a = 32 * p - 4 print(f"a = {a}")

Upper limit for X

upper_limit = E_X + 30 * a print(f"Upper limit (4800 + 30a) = {upper_limit}")

Calculate z-score

mu = E_X sigma = math.sqrt(n * p * (1 - p)) z = (upper_limit - mu) / sigma print(f"z-score = {z}")

From the table, P(0 ≤ Z ≤ 2.0) = 0.477

So P(Z ≤ 2.0) = 0.5 + 0.477 = 0.977

k = 0.5 + 0.477 print(f"k = {k}") print(f"1000k = {1000 * k}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] a = 4.0 Upper limit (4800 + 30a) = 4920.0 z-score = 2.0 k = 0.977 1000k = 977.0 [/PYTHON OUTPUT]
Reasoning Process

The value of aa is determined by solving a+432=0.25\frac{a + 4}{32} = 0.25, yielding a=4a = 4. The upper limit for XX is 4800+30×4=49204800 + 30 \times 4 = 4920. Using the normal approximation with mean 48004800 and standard deviation 6060, the z-score is 4920480060=2.0\frac{4920 - 4800}{60} = 2.0. From the standard normal table, P(0Z2.0)=0.477\text{P}(0 \leq Z \leq 2.0) = 0.477, so P(Z2.0)=0.5+0.477=0.977\text{P}(Z \leq 2.0) = 0.5 + 0.477 = 0.977. Thus, k=0.977k = 0.977 and 1000k=9771000k = 977.

\boxed{977}

Final Model Output
977

Comparative Analysis (P38) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
249.6
Llama-VARCO-8B-Instruct
69.5
Solar-Pro-2 (31B)(high)
64.7
Gemini-3-Pro-Preview
57.4
Deepseek-V3.2
51.2
Kanana-2-30B-Thinking
39.2
Kanana-2-30B-Thinking-2601
37.6
Grok-4.1-fast
32.0
HCX-007(high)
30.4
A.X-4.0 (72B)
28.0
GPT-5.1 (high)
25.8
Solar-Open-100B
23.2
Claude-Opus-4.5
21.1
K-EXAONE-236B-A23B
17.5
GPT-5.2 (high)
16.8
axk1
8.2
EXAONE-4.0.1-32B (high)
7.3

Avg Token Usage

K-EXAONE-236B-A23B
38446.0
Solar-Pro-2 (31B)(high)
10399.0
Gemini-3-Pro-Preview
10165.0
Kanana-2-30B-Thinking-2601
9914.5
Kanana-2-30B-Thinking
8437.0
Grok-4.1-fast
6540.0
Solar-Open-100B
6465.0
Claude-Opus-4.5
5947.0
Deepseek-V3.2
5195.0
HCX-007(high)
5075.0
EXAONE-4.0.1-32B (high)
4934.0
K-EXAONE-236B-A23B
4808.0
GPT-5.2 (high)
4057.0
GPT-5.1 (high)
3762.0
axk1
3323.0
Llama-VARCO-8B-Instruct
3117.0
A.X-4.0 (72B)
2613.0