Problem Analysis #2

538.47s
74,144 toks
Problem Statement

In the following, zz is a complex number and ii is the imaginary unit. Consider the complex functionf(z)=cotzz2,f(z) = \frac{\cot z}{z^2},where cotz=1tanz\cot z = \dfrac{1}{\tan z}. For a positive integer mm, defineDm=limz0dmdzm(zcotz).D_m = \lim_{z\to 0} \frac{d^m}{dz^m}(z \cot z).If necessary, you may use D2=23D_2 = -\dfrac{2}{3} andlimznπznπsinz=(1)nfor any integer n.\lim_{z\to n\pi} \frac{z - n\pi}{\sin z} = (-1)^n\quad\text{for any integer } n.

  • [I.] Find all poles of f(z)f(z). Also, find the order of each pole.
  • [II.] Find the residue of each pole found in I.
  • [III.] Let MM be a positive integer and set R=π(2M+1)R = \pi(2M+1). For each real parameter tt with R2tR2-\dfrac{R}{2} \le t \le \dfrac{R}{2}, consider the four line segments \begin{align*} C_1:\ & z(t) = \frac{R}{2} + it, \\ C_2:\ & z(t) = -t + i\frac{R}{2}, \\ C_3:\ & z(t) = -\frac{R}{2} - it, \\ C_4:\ & z(t) = t - i\frac{R}{2}. \end{align*} These four oriented segments form the boundary of a square centered at the origin, traversed counterclockwise. For each complex integral Ik=Ckf(z)dzI_k = \displaystyle\int_{C_k} f(z)\,dz along CkC_k (k=1,2,3,4k = 1,2,3,4), find limMIk\displaystyle\lim_{M\to\infty} I_k.
  • [IV.] Let CC be the closed loop composed of the four line segments C1,C2,C3C_1, C_2, C_3, and C4C_4 in III. By applying the residue theorem to the complex integral I=Cf(z)dz, I = \oint_C f(z)\,dz, find the value of the infinite series n=11n2. \sum_{n=1}^{\infty} \frac{1}{n^2}.
  • [V.] Now replace f(z)f(z) by the complex function g(z)=cotzz2N, g(z) = \frac{\cot z}{z^{2N}}, where NN is a positive integer. By following the same contour method as in I–IV, express the infinite series n=11n2N \sum_{n=1}^{\infty} \frac{1}{n^{2N}} in terms of DmD_m. Finally, let pp be the order of the pole of f(z)f(z) at z=0z=0 (from I), and let rr be the residue of f(z)f(z) at z=0z=0 (from II). Let S2S_2 denote the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained in IV. From the expression in V, let TT be the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained by setting N=1N=1 in your general formula.Compute the integerK=999(p21)(3r)(D2)S2T.\mathcal{K}= 999\,(p^2 - 1)\,(-3r)\,(-D_2)\,\frac{S_2}{T}.\
Ground Truth
5328
Execution Trace
Reasoning Process

We first determine the required quantities from the function (f(z)=\frac{\cot z}{z^2}).

Pole at (z=0):
(\cot z = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \cdots)
(\Rightarrow f(z) = \frac{1}{z^3} - \frac{1}{3z} + \cdots)
Hence the order of the pole at (z=0) is (p = 3), and the residue is (r = -\frac{1}{3}).

Given: (D_2 = -\dfrac{2}{3}).

Sum (\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2} = S_2):
From the residue theorem applied to the square contour in part IV, one obtains (S_2 = \frac{\pi^2}{6}).

General sum for (g(z)=\frac{\cot z}{z^{2N}}):
By the same contour method,
[ \sum_{n=1}^{\infty}\frac{1}{n^{2N}} = -\frac{\pi^{2N} D_{2N}}{2,(2N)!}. ]
For (N=1) this gives
[ T = -\frac{\pi^{2} D_2}{2\cdot 2!} = -\frac{\pi^{2} D_2}{4} = -\frac{\pi^{2}}{4}\left(-\frac{2}{3}\right) = \frac{\pi^{2}}{6}. ]
Thus (S_2 = T), so (\displaystyle\frac{S_2}{T}=1).

Compute (\mathcal{K}):
[ \begin{aligned} p^2-1 &= 3^2 - 1 = 8,\ -3r &= -3\left(-\frac{1}{3}\right) = 1,\ -D_2 &= -\left(-\frac{2}{3}\right) = \frac{2}{3},\ \frac{S_2}{T} &= 1. \end{aligned} ]
[ \mathcal{K} = 999 \times 8 \times 1 \times \frac{2}{3} \times 1 = 999 \times \frac{16}{3} = 999 \times \frac{16}{3} = 333 \times 16 = 5328. ]

[ \boxed{5328} ]

Reasoning Process

[THOUGHT]
We compute K using the formula:
K = 999 * (p2 - 1) * (-3 * r) * (-D_2) * (S_2 / T)
with p = 3, r = -1/3, D_2 = -2/3, S_2 = pi
2/6, T = pi**2/6.
We'll compute in Python for verification.

[/THOUGHT] [PYTHON] import math

p = 3 r = -1/3 D2 = -2/3 S2 = math.pi2 / 6 T = math.pi2 / 6

K = 999 * (p**2 - 1) * (-3 * r) * (-D2) * (S2 / T) print(K) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 5328.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
The problem requires computing the integer K=999(p21)(3r)(D2)S2T\mathcal{K} = 999\,(p^2 - 1)\,(-3r)\,(-D_2)\,\frac{S_2}{T}, where:

  • p=3p = 3 (order of the pole of f(z)f(z) at z=0z=0),
  • r=13r = -\frac{1}{3} (residue of f(z)f(z) at z=0z=0),
  • D2=23D_2 = -\frac{2}{3} (given),
  • S2=π26S_2 = \frac{\pi^2}{6} (value of n=11n2\sum_{n=1}^\infty \frac{1}{n^2} from part IV),
  • T=π26T = \frac{\pi^2}{6} (value of n=11n2\sum_{n=1}^\infty \frac{1}{n^2} from part V with N=1N=1).

Since S2=TS_2 = T, their ratio is 11. Substituting values:

K=999(321)(3(13))((23)1\mathcal{K} = 999 \cdot (3^2 - 1) \cdot \left(-3 \cdot \left(-\frac{1}{3}\right)\right) \cdot \left(-(-\frac{2}{3}\right) \cdot 1

Simplifying step-by-step:

  • p21=8p^2 - 1 = 8,
  • 3r=3(13)=1-3r = -3 \cdot (-\frac{1}{3}) = 1,
  • D2=(23)=23-D_2 = -(-\frac{2}{3}) = \frac{2}{3}.

Thus:

\mathcal{K} = 999 \cdot 8 \cdot 1 \cdot \frac{_so I'll compute this in Python to confirm. </THOUGHT> [PYTHON] import math p = 3 r = -1/3 D2 = -2/3 S2 = math.pi**2 / 6 T = math.pi**2 / 6 K = 999 * (p**2 - 1) * (-3 * r) * (-D2) * (S2 / T) K [/PYTHON] 5328.0
Tool Output
[PYTHON OUTPUT] 5328.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
We need to compute the integer
[ \mathcal{K} = 999,(p^2 - 1),(-3r),(-D_2),\frac{S_2}{T} ]
with

  • (p = 3) (order of pole of (f(z) = \frac{\cot z}{z^2}) at (z=0))
  • (r = -\frac{1}{3}) (residue of (f(z)) at (z=0))
  • (D_2 = -\frac{2}{3}) (given)
  • (S_2 = \frac{\pi^2}{6}) (sum from part IV)
  • (T = \frac{\pi^2}{6}) (sum from part V with (N=1))

Since (S_2 = T), (\frac{S_2}{T} = 1).

Now compute step-by-step:
[ p^2 - 1 = 9 - 1 = 8 ]
[ -3r = -3 \cdot \left(-\frac{1}{3}\right) = 1 ]
[ -D_2 = -\left(-\frac{2}{3}\right) = \frac{2}{3} ]
Thus
[ \mathcal{K} = 999 \cdot 8 \cdot 1 \cdot \frac{2}{3} \cdot 1 = 999 \cdot \frac{16}{3} = 333 \cdot 16 = 5328 ]

We verify with Python:

</THOUGHT> [PYTHON] import math

p = 3 r = -1/3 D2 = -2/3 S2 = math.pi2 / 6 T = math.pi2 / 6

K = 999 * (p**2 - 1) * (-3 * quest: I realize I made a small error in the Python code block in the previous thought. I'll correct it now.

In the previous step, I had a Python block, but I need to ensure it's correct. Let me write the correct code:

[THOUGHT] We have:

  • p = 3
  • r = -1/3
  • D2 = -2/3
  • S2 = math.pi**2 / 6
  • T = math.pi**2 / 6

Compute K = 999 * (p**2 - 1) * (-3 * r) * (-D2) * (S2 / T)

Let's compute this in Python. </think>

[THOUGHT] We compute K using the given values. </THOUGHT> [PYTHON] import math

p = 3 r = -1/3 D2 = -2/3 S2 = math.pi2 / 6 T = math.pi2 / 6

K = 999 * (p**2 - 1) * (-3 * r) * (-D2) * (S2 / T) print(K) [/PYTHON]

Tool Output
[PYTHON OUTPUT] SyntaxError: unterminated string literal (detected at line 9) (<string>, line 9) [/PYTHON OUTPUT]
Reasoning Process

5328

Reasoning Process

[THOUGHT] The integer 𝒦 = 5328.

\boxed{5328}

Reasoning Process

[THOUGHT] The integer (\mathcal{K} = 999 \times (p^2 - 1) \times (-3r) \times (-D_2) \times \frac{S_2}{T}), with (p = 3), (r = -\frac{1}{3}), (D_2 = -\frac{2}{3}), (S_2 = \frac{\pi^2}{6}), (T = \frac{\pi^2}{6}).
Since (S_2 / T = 1), we compute:

  • (p^2 - 1 = 8)
  • (-3r = -3 \times (-\frac{1}{3}) = 1)
  • (-D_2 = -(-\frac{2}{3}) = \frac{2}{3}) Thus (\mathcal{K} = 999 \times 8 \times 1 \times \frac{2}{3} = 999 \times \frac{16}{3} = 333 \times 16 = 5328).

[ \boxed{5328} ]

Reasoning Process

[THOUGHT] We'll compute K using Python. [/THOUGHT] [PYTHON] import math

p = 3 r = -1/3 D2 = -2/3 S2 = math.pi2 / 6 T = math.pi2 / 6

K = 999 * (p**2 - 1) * (-3 * r) * (-D2) * (S2 / T) K [/PYTHON]

Tool Output
[PYTHON OUTPUT] 5328.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The integer (\mathcal{K} = 5328). [ \boxed{5328} ]

Final Model Output
5328

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
448.4
Solar-Open-100B
223.1
Llama-VARCO-8B-Instruct
149.6
Gemini-3-Pro-Preview
144.7
Kanana-2-30B-Thinking
97.9
Grok-4.1-fast
89.6
K-EXAONE-236B-A23B
72.4
Solar-Pro-2 (31B)(high)
71.1
GPT-5.1 (high)
55.4
Deepseek-V3.2
48.1
A.X-4.0 (72B)
43.9
Claude-Opus-4.5
33.5
Kanana-2-30B-Thinking-2601
33.5
HCX-007(high)
32.2
axk1
18.0
EXAONE-4.0.1-32B (high)
15.1
GPT-5.2 (high)
11.9

Avg Token Usage

K-EXAONE-236B-A23B
57849.7
Solar-Open-100B
36387.0
Kanana-2-30B-Thinking
18183.0
Grok-4.1-fast
14348.0
Solar-Pro-2 (31B)(high)
13266.0
Llama-VARCO-8B-Instruct
12669.0
K-EXAONE-236B-A23B
11254.0
Gemini-3-Pro-Preview
10743.0
Kanana-2-30B-Thinking-2601
9313.5
Deepseek-V3.2
8345.0
Claude-Opus-4.5
8331.0
EXAONE-4.0.1-32B (high)
8303.0
GPT-5.1 (high)
5813.0
axk1
5525.0
HCX-007(high)
5438.0
GPT-5.2 (high)
4500.0
A.X-4.0 (72B)
3825.0