Problem Analysis #32

33.15s
6,562 toks
Problem Statement

Let {an}\{a_n\} be a sequence satisfying the following conditions.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}

  • a1=7a_1 = 7,
  • For every natural number n2n \geq 2, k=1nak=23an+16n216n+10. \sum_{k=1}^{n} a_k = \frac{2}{3}a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10. \end{minipage}}\end{center}Consider the following work to computek=112ak+k=15a2k+1.\sum_{k=1}^{12} a_k + \sum_{k=1}^{5} a_{2k+1}.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}For every natural number n2n \geq 2,an+1=k=1n+1akk=1nak,a_{n+1} = \sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k,soan+1=23(an+1an)+(A),a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + \boxed{(\text{A})},and, after rearranging this expression,2an+an+1=3×(A)(i).2a_n + a_{n+1} = 3 \times \boxed{(\text{A})} \qquad \cdots\cdots \text{(i)}.Fromk=1nak=23an+16n216n+10(n2),\sum_{k=1}^{n} a_k = \frac{2}{3}a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10 \quad (n \geq 2),substituting n=2n = 2 into both sides givesa2=(B)(ii).a_2 = \boxed{(\text{B})} \qquad \cdots\cdots \text{(ii)}.By (i) and (ii),\sum_{k=1}^{12} a_k + \sum_{k=1}^{5} a_{2k+1} = a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2})$$$$= \boxed{(\text{C})}.\end{minipage}}\end{center}Let f(n)f(n) be the expression corresponding to \boxed{(\text{A})}, and let pp and qq be the numbers corresponding to \boxed{(\text{B})} and \boxed{(\text{C})}, respectively. Computep×qf(12).\dfrac{p \times q}{f(12)}.[4 points]\
Ground Truth
130
Execution Trace
Reasoning Process

[THOUGHT] We need to understand the problem. We have a sequence ({a_n}) with (a_1 = 7) and for (n \ge 2): [ S_n := \sum_{k=1}^n a_k = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10. ] We are given some work that leads to blanks (A), (B), (C). We need to find (p) and (q) corresponding to (B) and (C), and (f(n)) corresponding to (A), then compute (\frac{p \times q}{f(12)}).

First, let's derive the recurrence. For (n \ge 2): [ S_n = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10. ] Also (S_{n+1} = \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10).

But (a_{n+1} = S_{n+1} - S_n). So: [ a_{n+1} = \left[ \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10 \right] - \left[ \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10 \right]. ] Simplify: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}[(n+1)^2 - n^2] - \frac{1}{6}[(n+1) - n]. ] Compute differences: [ (n+1)^2 - n^2 = 2n+1, \quad (n+1) - n = 1. ] So: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n+1) - \frac{1}{6}(1) = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n+1 - 1) = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n). ] [ \frac{1}{6}(2n) = \frac{n}{3}. ] Thus: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{n}{3}. ] Bring (\frac{2}{3} a_{n+1}) to left: [ a_{n+1} - \frac{2}{3} a_{n+1} = -\frac{2}{3} a_n + \frac{n}{3}. ] [ \frac{1}{3} a_{n+1} = -\frac{2}{3} a_n + \frac{n}{3}. ] Multiply by 3: [ a_{n+1} = -2 a_n + n. ] So recurrence: (a_{n+1} = -2 a_n + n), for (n \ge 2)? Wait, we derived for (n \ge 2) because original (S_n) formula holds for (n \ge 2). Let's check: The step used (S_n) formula for (n) and (n+1) both (\ge 2), so (n \ge 2) indeed. But we can compute (a_2) using (S_2) formula.

Now, the problem's work says: [ a_{n+1} = \sum_{k=1}^{n+1} a_k - \sum_{k=1}^n a_k = \frac{2}{3}(a_{n+1} - a_n) + \boxed{(\text{A})}. ] Let's verify: (S_{n+1} - S_n = \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10 - \left( \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10 \right) = \frac{2}{3}(a_{n+1} - a_n) + \frac{1}{6}[(n+1)^2 - n^2] - \frac{1}{6}[(n+1)-n]). We computed that difference as (\frac{1}{6}(2n+1) - \frac{1}{6}(1) = \frac{2n}{6} = \frac{n}{3}). So indeed: [ a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + \frac{n}{3}. ] Thus (A) is (\frac{n}{3})? But careful: In the work, they wrote: [ a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + \boxed{(\text{A})}. ] So (\boxed{(\text{A})}) should be (\frac{n}{3}). But then they say "after rearranging this expression, (2a_n + a_{n+1} = 3 \times \boxed{(\text{A})})". Let's check: Starting from (a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + A) where (A = \frac{n}{3}). Multiply both sides by 3: (3a_{n+1} = 2(a_{n+1} - a_n) + 3A). So (3a_{n+1} = 2a_{n+1} - 2a_n + 3A). Then (a_{n+1} = -2a_n + 3A). So (2a_n + a_{n+1} = 3A). Indeed they wrote (2a_n + a_{n+1} = 3 \times \boxed{(\text{A})}). So (\boxed{(\text{A})}) is (\frac{n}{3}). But they define (f(n)) as the expression corresponding to (A). So (f(n) = \frac{n}{3}). Wait, but then (f(12) = \frac{12}{3} = 4). But let's verify later.

Now (B): substituting (n=2) into both sides of (S_n = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10) gives (S_2 = a_1 + a_2 = 7 + a_2). Right side: (\frac{2}{3} a_2 + \frac{1}{6}(4) - \frac{1}{6}(2) + 10 = \frac{2}{3} a_2 + \frac{4}{6} - \frac{2}{6} + 10 = \frac{2}{3} a_2 + \frac{2}{6} + 10 = \frac{2}{3} a_2 + \frac{1}{3} + 10). So: [ 7 + a_2 = \frac{2}{3} a_2 + \frac{1}{3} + 10. ] Multiply by 3: (21 + 3a_2 = 2a_2 + 1 + 30). So (21 + 3a_2 = 2a_2 + 31). Thus (3a_2 - 2a_2 = 31 - 21), so (a_2 = 10). So (B) is 10. That's (p = 10).

Now (C): They claim: [ \sum_{k=1}^{12} a_k + \sum_{k=1}^{5} a_{2k+1} = a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2}) = \boxed{(\text{C})}. ] Let's understand: The left side is (S_{12} + \sum_{k=1}^{5} a_{2k+1}). But note (a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2}) = a_1 + a_2 + \sum_{k=1}^{5} 2a_{2k+1} + \sum_{k=1}^{5} a_{2k+2}). The second sum is (a_4 + a_6 + a_8 + a_{10} + a_{12}). The first sum is (a_3 + a_5 + a_7 + a_9 + a_{11}). So total: (a_1 + a_2 + 2(a_3 + a_5 + a_7 + a_9 + a_{11}) + (a_4 + a_6 + a_8 + a_{10} + a_{12})). But left side is (S_{12} + (a_3 + a_5 + a_7 + a_9 + a_{11}) = (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11} + a_{12}) + (a_3 + a_5 + a_7 + a_9 + a_{11})). So left = (a_1 + a_2 + 2a_3 + a_4 + 2a_5 + a_6 + 2a_7 + a_8 + 2a_9 + a_{10} + 2a_{11} + a_{12}). That matches right side. So indeed the equality holds.

Now they say this equals (C). But (C) is the value of that expression. So we need to compute (a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2})). Using recurrence (a_{n+1} = -2a_n + n), we can compute (a_n) for (n=1) to (13). We have (a_1 = 7), (a_2 = 10). Then: (a_3 = -2a_2 + 2 = -20 + 2 = -18) (a_4 = -2a_3 + 3 = 36 + 3 = 39) (a_5 = -2a_4 + 4 = -78 + 4 = -74) (a_6 = -2a_5 + 5 = 148 + 5 = 153) (a_7 = -2a_6 + 6 = -306 + 6 = -300) (a_8 = -2a_7 + 7 = 600 + 7 = 607) (a_9 = -2a_8 + 8 = -1214 + 8 = -1206) (a_{10} = -2a_9 + 9 = 2412 + 9 = 2421) (a_{11} = -2a_{10} + 10 = -4842 + 10 = -4832) (a_{12} = -2a_{11} + 11 = 9664 + 11 = 9675) (a_{13} = -2a_{12} + 12 = -19350 + 12 = -19338) (not needed maybe).

Now compute (2a_{2k+1} + a_{2k+2}) for (k=1) to (5):

k=1: (2a_3 + a_4 = 2(-18) + 39 = -36 + 39 = 3) k=2: (2a_5 + a_6 = 2(-74) + 153 = -148 + 153 = 5) k=3: (2a_7 + a_8 = 2(-300) + 607 = -600 + 607 = 7) k=4: (2a_9 + a_{10} = 2(-1206) + 2421 = -2412 + 2421 = 9) k=5: (2a_{11} + a_{12} = 2(-4832) + 9675 = -9664 + 9675 = 11)

Sum of these: (3+5+7+9+11 = 35).

Then (a_1 + a_2 = 7 + 10 = 17). So total = (17 + 35 = 52). So (C) = 52. That's (q = 52).

Now (f(n) = \frac{n}{3}), so (f(12) = 4).

Then (\frac{p \times q}{f(12)} = \frac{10 \times 52}{4} = \frac{520}{4} = 130).

Thus answer is 130.

But let's double-check with Python to ensure no arithmetic mistake.

We'll compute using Python. </think>

[PYTHON]

Given a1 = 7, a2 = 10 from earlier derivation.

a = [0] * 13 # indices 1..12 a[1] = 7 a[2] = 10 for n in range(2, 12): # n from 2 to 11, compute a_{n+1} a[n+1] = -2 * a[n] + n

print("a[1] to a[12]:", [a[i] for i in range(1, 13)])

Compute f(n) = n/3

def f(n): return n / 3

p = a2 = 10

p = a[2]

Compute q = a1 + a2 + sum_{k=1..5} (2*a_{2k+1} + a_{2k+2})

q = a[1] + a[2] for k in range(1, 6): q += 2 * a[2k + 1] + a[2k + 2]

print("p =", p) print("q =", q) print("f(12) =", f(12)) print("p*q / f(12) =", p * q / f(12)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] a[1] to a[12]: [7, 10, -18, 39, -74, 153, -300, 607, -1206, 2421, -4832, 9675] p = 10 q = 52 f(12) = 4.0 p*q / f(12) = 130.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] From the Python output, we have ( p = 10 ), ( q = 52 ), ( f(12) = 4.0 ), and ( \frac{p \times q}{f(12)} = 130.0 ). The problem asks for the value of ( \frac{p \times q}{f(12)} ), which is ( 130 ). The final answer is ( \boxed{130} ). [/THOUGHT] \boxed{130}

Final Model Output
130

Comparative Analysis (P32) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
1815.5
K-EXAONE-236B-A23B
1469.7
Gemini-3-Pro-Preview
246.1
Llama-VARCO-8B-Instruct
209.4
Deepseek-V3.2
165.9
Solar-Open-100B
78.9
Solar-Pro-2 (31B)(high)
74.9
Kanana-2-30B-Thinking-2601
73.7
Kanana-2-30B-Thinking
65.0
HCX-007(high)
47.3
K-EXAONE-236B-A23B
33.2
A.X-4.0 (72B)
33.1
Grok-4.1-fast
32.4
GPT-5.1 (high)
32.3
Claude-Opus-4.5
30.3
GPT-5.2 (high)
23.6
axk1
10.9

Avg Token Usage

K-EXAONE-236B-A23B
172400.7
Llama-VARCO-8B-Instruct
16930.0
Solar-Open-100B
15251.0
Kanana-2-30B-Thinking-2601
14849.0
Solar-Pro-2 (31B)(high)
13356.0
Kanana-2-30B-Thinking
13274.0
Gemini-3-Pro-Preview
11189.0
Grok-4.1-fast
9697.0
Deepseek-V3.2
7656.0
Claude-Opus-4.5
7594.0
HCX-007(high)
6642.0
K-EXAONE-236B-A23B
6562.0
A.X-4.0 (72B)
6211.0
GPT-5.1 (high)
5774.0
GPT-5.2 (high)
5721.0
axk1
4112.0
EXAONE-4.0.1-32B (high)
940.0