Problem Analysis #0

21.40s
6,596 toks
Problem Statement

Consider the curve CC given in polar coordinates byr=2+cosθ(0θ2π),r = 2 + \cos\theta \qquad (0 \le \theta \le 2\pi),with the origin OO as the pole and the positive xx–axis as the initial line.

  • [(1)] Compute the area of the region enclosed by the curve CC.
  • [(2)] At the point (r,θ)=(4+22,π4), (r,\theta)=\left(\frac{4+\sqrt{2}}{2},\,\frac{\pi}{4}\right), find the slope of the tangent line to the curve CC in the xyxy–coordinate plane. Let aa be the value obtained in part (1). Express the answer from part (2) in the formb+c,b + \sqrt{c},where bb and cc are integers, and let those integers be the definitions of bb and cc. Using these values of aa, bb, and cc, computeabcπ.\frac{abc}{\pi}.\
Ground Truth
-18
Execution Trace
Reasoning Process

[THOUGHT] I need to solve the problem step by step.

First, part (1): Compute the area enclosed by the curve ( r = 2 + \cos\theta ) for ( 0 \le \theta \le 2\pi ).

In polar coordinates, the area enclosed by a curve ( r(\theta) ) from ( \theta = \alpha ) to ( \theta = \beta ) is given by: [ A = \frac{1}{2} \int_{\alpha}^{\beta} r(\theta)^2 , d\theta. ] Here, ( r(\theta) = 2 + \cos\theta ), and the curve is traced once as ( \theta ) goes from 0 to ( 2\pi ). So: [ A = \frac{1}{2} \int_{0}^{2\pi} (2 + \cos\theta)^2 , d\theta. ] Expand: ( (2 + \cos\theta)^2 = 4 + 4\cos\theta + \cos^2\theta ).

Thus: [ A = \frac{1}{2} \int_{0}^{2\pi} \left(4 + 4\cos\theta + \cos^2\theta\right) d\theta. ] We can compute each integral separately.

Note: ( \int_{0}^{2\pi} \cos\theta , d\theta = 0 ).

Also, ( \cos^2\theta = \frac{1 + \cos 2\theta}{2} ).

So: [ \int_{0}^{2\pi} \cos^2\theta , d\theta = \int_{0}^{2\pi} \frac{1 + \cos 2\theta}{2} , d\theta = \frac{1}{2} \int_{0}^{2\pi} 1 , d\theta + \frac{1}{2} \int_{0}^{2\pi} \cos 2\theta , d\theta. ] The second integral is zero because ( \cos 2\theta ) over a full period (actually two periods) integrates to zero. So: [ \int_{0}^{2\pi} \cos^2\theta , d\theta = \frac{1}{2} \cdot 2\pi = \pi. ]

Now: [ \int_{0}^{2\pi} 4 , d\theta = 4 \cdot 2\pi = 8\pi. ] [ \int_{0}^{2\pi} 4\cos\theta , d\theta = 0. ] So: [ \int_{0}^{2\pi} (4 + 4\cos\theta + \cos^2\theta) , d\theta = 8\pi + 0 + \pi = 9\pi. ] Thus: [ A = \frac{1}{2} \cdot 9\pi = \frac{9\pi}{2}. ] So ( a = \frac{9\pi}{2} ).

Now part (2): At the point ( (r, \theta) = \left( \frac{4+\sqrt{2}}{2}, \frac{\pi}{4} \right) ), find the slope of the tangent line to the curve ( C ) in the ( xy )-plane.

We have ( r = 2 + \cos\theta ). Check if the given point satisfies this: at ( \theta = \pi/4 ), ( \cos(\pi/4) = \sqrt{2}/2 ), so: [ r = 2 + \frac{\sqrt{2}}{2} = \frac{4 + \sqrt{2}}{2}. ] Yes, it matches.

We need the slope ( \frac{dy}{dx} ) at that point. In polar coordinates: [ x = r\cos\theta, \quad y = r\sin\theta. ] Then: [ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}. ] We have: [ \frac{dy}{d\theta} = \frac{dr}{d\theta} \sin\theta + r \cos\theta, ] [ \frac{dx}{d\theta} = \frac{dr}{d\theta} \cos\theta - r \sin\theta. ] Here, ( r = 2 + \cos\theta ), so ( \frac{dr}{d\theta} = -\sin\theta ).

Thus: [ \frac{dy}{d\theta} = (-\sin\theta) \sin\theta + r \cos\theta = -\sin^2\theta + r \cos\theta, ] [ \frac{dx}{d\theta} = (-\sin\theta) \cos\theta - r \sin\theta = -\sin\theta \cos\theta - r \sin\theta. ]

At ( \theta = \pi/4 ): [ \sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt{2}}{2}. ] So: [ \sin^2(\pi/4) = \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{2}{4} = \frac{1}{2}. ] [ r = \frac{4 + \sqrt{2}}{2}. ] Now compute: [ \frac{dy}{d\theta} = -\frac{1}{2} + r \cdot \frac{\sqrt{2}}{2} = -\frac{1}{2} + \frac{4 + \sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}. ] Simplify: [ \frac{4 + \sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{(4 + \sqrt{2})\sqrt{2}}{4} = \frac{4\sqrt{2} + 2}{4} = \frac{2\sqrt{2} + 1}{2}. ] Wait, let's compute carefully: [ (4 + \sqrt{2}) \cdot \sqrt{2} = 4\sqrt{2} + 2. ] Divide by 4: ( \frac{4\sqrt{2} + 2}{4} = \frac{2\sqrt{2} + 1}{2} ). So: [ \frac{dy}{d\theta} = -\frac{1}{2} + \frac{2\sqrt{2} + 1}{2} = \frac{-\frac{1}{2} \cdot 2? Wait: better common denominator 2:} ] [ -\frac{1}{2} + \frac{2\sqrt{2} + 1}{2} = \frac{-1 + 2\sqrt{2} + 1}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}. ] So ( \frac{dy}{d\theta} = \sqrt{2} ).

Now ( \frac{dx}{d\theta} = -\sin\theta \cos\theta - r \sin\theta ). At ( \theta = \pi/4 ): [ \sin\theta \cos\theta = \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{1}{2}. ] So: [ \frac{dx}{d\theta} = -\frac{1}{2} - r \cdot \frac{\sqrt{2}}{2}. ] We already computed ( r \cdot \frac{\sqrt{2}}{2} = \frac{2\sqrt{2} + 1}{2} ). Thus: [ \frac{dx}{d\theta} = -\frac{1}{2} - \frac{2\sqrt{2} + 1}{2} = \frac{-1 - 2\sqrt{2} - 1}{2} = \frac{-2 - 2\sqrt{2}}{2} = -1 - \sqrt{2}. ]

Therefore: [ \frac{dy}{dx} = \frac{\sqrt{2}}{-1 - \sqrt{2}}. ] Simplify by multiplying numerator and denominator by ( -1 + \sqrt{2} ): [ \frac{\sqrt{2}}{-1 - \sqrt{2}} \cdot \frac{-1 + \sqrt{2}}{-1 + \sqrt{2}} = \frac{\sqrt{2}(-1 + \sqrt{2})}{(-1)^2 - (\sqrt{2})^2} = \frac{-\sqrt{2} + 2}{1 - 2} = \frac{2 - \sqrt{2}}{-1} = -2 + \sqrt{2}. ] So the slope is ( -2 + \sqrt{2} ).

The problem asks: "Express the answer from part (2) in the form ( b + \sqrt{c} ), where ( b ) and ( c ) are integers." Here, slope = ( -2 + \sqrt{2} ), so ( b = -2 ), ( c = 2 ).

But wait: the problem says "let those integers be the definitions of ( b ) and ( c )." So ( b = -2 ), ( c = 2 ).

Now we need to compute ( \frac{abc}{\pi} ), where ( a = \frac{9\pi}{2} ), ( b = -2 ), ( c = 2 ).

Thus: [ \frac{abc}{\pi} = \frac{ \frac{9\pi}{2} \cdot (-2) \cdot 2 }{ \pi } = \frac{ \frac{9\pi}{2} \cdot (-4) }{ \pi } = \frac{ -18\pi }{ \pi } = -18. ]

So the answer is -18.

Let me verify with Python to avoid mistakes.

[PYTHON] import sympy as sp

Part (1): area

theta = sp.symbols('theta') r = 2 + sp.cos(theta) area_expr = sp.Rational(1,2) * sp.integrate(r**2, (theta, 0, 2*sp.pi)) print("Area a =", area_expr) print("a =", area_expr.simplify())

Part (2): slope at given point

theta_val = sp.pi/4 r_val = (4 + sp.sqrt(2))/2 dr_dtheta = -sp.sin(theta_val) # derivative of r w.r.t theta

dy/dtheta and dx/dtheta

dy_dtheta = dr_dtheta * sp.sin(theta_val) + r_val * sp.cos(theta_val) dx_dtheta = dr_dtheta * sp.cos(theta_val) - r_val * sp.sin(theta_val)

slope = sp.simplify(dy_dtheta / dx_dtheta) print("Slope =", slope)

Express as b + sqrt(c)

slope_simplified = sp.simplify(slope) print("Simplified slope =", slope_simplified)

Identify b and c: slope = b + sqrt(c)

slope = -2 + sqrt(2)

b = -2 c = 2 print("b =", b, "c =", c)

Compute abc/pi

a = 9*sp.pi/2 abc_over_pi = (a * b * c) / sp.pi print("abc/pi =", abc_over_pi) print("abc/pi as integer =", abc_over_pi.simplify()) [/PYTHON]

Tool Output
[PYTHON OUTPUT] Area a = 9*pi/2 a = 9*pi/2 Slope = -2 + sqrt(2) Simplified slope = -2 + sqrt(2) b = -2 c = 2 abc/pi = -18 abc/pi as integer = -18 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output confirms: area ( a = \frac{9\pi}{2} ), slope = ( -2 + \sqrt{2} ) so ( b = -2 ), ( c = 2 ), and ( \frac{abc}{\pi} = -18 ). The final answer is (-18).

\boxed{-18}

Final Model Output
-18

Comparative Analysis (P0) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
316.3
K-EXAONE-236B-A23B
234.2
Deepseek-V3.2
81.3
Kanana-2-30B-Thinking
70.7
Kanana-2-30B-Thinking-2601
59.2
Llama-VARCO-8B-Instruct
49.3
GPT-5.1 (high)
38.4
HCX-007(high)
36.4
GPT-5.2 (high)
33.6
Solar-Pro-2 (31B)(high)
30.2
K-EXAONE-236B-A23B
21.4
Grok-4.1-fast
21.1
Claude-Opus-4.5
18.0
Solar-Open-100B
17.0
A.X-4.0 (72B)
16.6
axk1
7.6
EXAONE-4.0.1-32B (high)
6.7

Avg Token Usage

K-EXAONE-236B-A23B
22900.7
Gemini-3-Pro-Preview
12238.0
Kanana-2-30B-Thinking-2601
12235.0
Kanana-2-30B-Thinking
12196.0
Deepseek-V3.2
7244.0
GPT-5.2 (high)
7100.0
Solar-Pro-2 (31B)(high)
6632.0
K-EXAONE-236B-A23B
6596.0
HCX-007(high)
6397.0
Grok-4.1-fast
6290.0
Solar-Open-100B
5244.0
GPT-5.1 (high)
4822.0
Claude-Opus-4.5
4528.0
Llama-VARCO-8B-Instruct
4316.0
EXAONE-4.0.1-32B (high)
4306.0
A.X-4.0 (72B)
3605.0
axk1
3010.0